Heat and mass transfer in magnetohydrodynamics (MHD) flow over an exponentially stretching sheet in a thermally stratified medium

2018 ◽  
Author(s):  
Muhamad Affan Mohd Faudzi ◽  
Ahmad Sukri Abd Aziz ◽  
Zaileha Md Ali
MATEMATIKA ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 187-200
Author(s):  
Siti Nur Haseela Izani ◽  
Anati Ali

The heat and mass transfer of steady magnetohydrodynamics of dusty Jeffrey fluid past an exponentially stretching sheet in the presence of thermal radiation have been investigated. The main purpose of this study is to conduct a detailed analysis of flow behaviour of suspended dust particles in non-Newtonian fluid. The governing equations hav been converted into dimensionless form, and then solved numerically via the Keller-box method. The expression of Sherwood number, Nusselt number and skin friction have been evaluated, and then displayed in tabular forms. Velocity, temperature and concentration profiles are presented graphically. It is observed that large value of dust particles mass concentration parameter has reduced the flow velocity significantly. Increase in radiation parameter enhances the temperature, whereas the increment in Schmidt number parameter reduces the concentration.


2021 ◽  
pp. 309-309
Author(s):  
Muavia Mansoo ◽  
Yasir Nawa ◽  
Qazi ul-Hassan

In this paper a modification of existing mathematical model of MHD radiative incompressible fluid flow over exponentially stretching sheet is given by accumulating equation of mass transfer under an influence of chemical reaction. Using local non-similarity variables method, governing equations for heat and mass transfer of viscous fluid flow are efficiently remodeled into the system of dimensionless partial differential equations (PDEs), and later on the obtained system of dimensionless PDEs is tackled numerically using MATLbuilt in solver bvp4c. Graphs of temperature, velocity and concentration profiles are explained through variation of different values of physical parameters. Significant effects of several parameters, for example radiation and magnetic parameters, Eckert and Prandtl numbers on local skin-friction coefficient, local Nusselt and Sherwood numbers are computed in tabular form


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


Sign in / Sign up

Export Citation Format

Share Document