Natural disaster mitigation of Sinabung Mountain by using landsat satellite image

2018 ◽  
Author(s):  
Togi Tampubolon ◽  
Rita Juliani ◽  
Muhammad Ali Thoha Harahap
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Francesco Maria Sabatini ◽  
Hendrik Bluhm ◽  
Zoltan Kun ◽  
Dmitry Aksenov ◽  
José A. Atauri ◽  
...  

AbstractPrimary forests, defined here as forests where the signs of human impacts, if any, are strongly blurred due to decades without forest management, are scarce in Europe and continue to disappear. Despite these losses, we know little about where these forests occur. Here, we present a comprehensive geodatabase and map of Europe’s known primary forests. Our geodatabase harmonizes 48 different, mostly field-based datasets of primary forests, and contains 18,411 individual patches (41.1 Mha) spread across 33 countries. When available, we provide information on each patch (name, location, naturalness, extent and dominant tree species) and the surrounding landscape (biogeographical regions, protection status, potential natural vegetation, current forest extent). Using Landsat satellite-image time series (1985–2018) we checked each patch for possible disturbance events since primary forests were identified, resulting in 94% of patches free of significant disturbances in the last 30 years. Although knowledge gaps remain, ours is the most comprehensive dataset on primary forests in Europe, and will be useful for ecological studies, and conservation planning to safeguard these unique forests.


2007 ◽  
Vol 60 ◽  
pp. 137-140 ◽  
Author(s):  
J.D. Shepherd ◽  
J.R. Dymond ◽  
J.R.I. Cuff

The spatial change of woody vegetation in the Canterbury region was automatically mapped between 1990 and 2001 using Landsat satellite image mosaics The intersection of valid data from these mosaics gave coverage of 84 of the Canterbury region Changes in woody cover greater than 5 ha were identified Of the 5 ha areas of woody change only those that were likely to have been a scrub change were selected using ancillary thematic data for current vegetation cover (eg afforestation and deforestation were excluded) This resulted in 2466 polygons of potential scrub change These polygons were rapidly checked by visual assessment of the satellite imagery and assigned to exotic or indigenous scrub change categories Between 1990 and 2001 the total scrub weed area in the Canterbury region increased by 3600 400 ha and indigenous scrub increased by 2300 400 ha


2020 ◽  
Vol 5 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Eddy Noviana ◽  
Otang Kurniaman ◽  
Nofrico Affendi

Disaster mitigation learning in elementary schools is the knowledge that must be taught considering that Indonesia is a disaster-prone region. This research was aimed to design and develop KOASE comics that are appropriate to be used to understand disaster mitigation. The research method used was the 4D (Define, Design, Develop, dan Disseminate) model. The feasibility of the product assessed by expert validators was 51.13 with a fairly feasible category. The teacher’s response at the development stage obtained the score of 92.08 with a very good category and the students’ responses obtained a score of 85.87 with a very good category. Then it can be concluded that the development of KOASE comics is appropriate to be used as a medium for disaster mitigation learning. It is suggested for the next researcher is to develop comics that are more specific to one type of natural disaster so that they can explore the depth of essential material. For the teacher, this comic can be used as a source of additional reading and learning media in teaching disaster mitigation.


2020 ◽  
Vol 12 (7) ◽  
pp. 2503
Author(s):  
Ana Paula Sena de Souza ◽  
Ivonice Sena de Souza ◽  
George Olavo ◽  
Jocimara Souza Britto Lobão ◽  
Rafael Vinícius de São José

O ecossistema manguezal representa 8% de toda a linha de costa do planeta ocupando uma área total de 181.077 km2. O Brasil é o segundo país em extensão de áreas de manguezal, ficando atrás apenas da Indonésia. O objetivo do presente estudo foi mapear e identificar os principais vetores responsáveis pela supressão da cobertura das áreas de manguezal na região do Baixo Sul da Bahia, Brasil, a partir de imagens de satélite Landsat disponíveis para o período entre 1994 e 2017. Os mapeamentos foram realizados a partir de classificação supervisionada, utilizando o método Maxver. A acurácia da classificação obtida foi verificada através da verdade de campo, de índices de Exatidão Global, e dos coeficientes de concordância kappa e Tau. As classes que apresentaram maior área de cobertura no período analisado foram: vegetação ombrófila densa, agropecuária, solo exposto e manguezal. Foram identificados dois vetores principais responsáveis pela supressão dos bosques de mangue: a expansão desordenada das áreas urbanas (com destaque para o município de Valença) e o avanço da atividade de carcinicultura clandestina, devido a instalação de tanques de cultivo de camarão sem o devido processo de licenciamento ambiental (sobretudo no município de Nilo Peçanha). O uso das geotecnologias, em especial o Sensoriamento Remoto e os Sistemas de Informações Geográficas, foram ferramentas fundamentais na identificação destes vetores responsáveis pela supressão das áreas de manguezal na área de estudo região do Baixo Sul da Bahia.  Mapping and identification of vectors responsible for mangrove suppression in the Southern Bahia Lowlands, BrazilA B S T R A C TThe mangrove ecosystem represents 8% of the entire coastline of the planet and occupies a total area of 181,077 km2. Brazil is the second largest country in terms of mangrove areas, second only to Indonesia. The aim of the present study was to map and identify the main vectors responsible for the suppression of mangrove cover in the Southern Lowlands of Bahia, Brazil, from Landsat satellite images available for the period 1994-2017. based on supervised classification using the Maxver method. The accuracy of the classification obtained was verified through field truth, Global Accuracy indices, and kappa and Tau agreement coefficients. The classes that presented larger coverage area in the analyzed period were: dense ombrophilous vegetation, agriculture, exposed soil and mangrove. Two main vectors responsible for the suppression of mangrove forests were identified: the disorderly expansion of urban areas (especially the municipality of Valença) and the advance of clandestine shrimp farming due to the installation of shrimp farms without due environmental licensing process (mainly in the municipality of Nilo Peçanha). The use of geotechnologies, especially Remote Sensing and Geographic Information Systems, were fundamental tools in the identification of these vectors responsible for the suppression of mangrove areas in the study area of the Southern Bahia Lowlands.Key-words: environmental impacts, satellite image, shrimp farming.


2019 ◽  
Vol 20 (1) ◽  
pp. 1-5
Author(s):  
Husmul Beze ◽  
Suparjo

In the last ten years the people on Sebatik Island have experienced water shortages. This happened because the forest which is the source of community water dried up. It is estimated that the drying up of these springs is due to changes in the function of forests as water reserves. This change in forest function occurs as a result of the process of clearing forests for plantations or other development activities. This is why it is necessary to analyze the protected forest cover on Sebatik Island. In this study, analysis of forest cover was carried out based on Landsat satellite imagery. To check the correctness of the analysis results on the satellite image, field checks are carried out. Based on the research results, the forest area on Sebatik Island has an area of ​​2,088.37 ha. The damaged forest is estimated to be 339.97ha, while the protected forest area which is still in good condition has an area of ​​1,748.40 ha.


Sign in / Sign up

Export Citation Format

Share Document