Physical and mechanical properties of heat affected zone of dissimilar welds between duplex stainless steel and low carbon steel

2018 ◽  
Author(s):  
Nsikan Etim Dan ◽  
Muhammad Shazwan Mahmud ◽  
Patthi Hussain ◽  
Hamed Mohebbi ◽  
Saeid Kakooei
2015 ◽  
Vol 766-767 ◽  
pp. 780-788
Author(s):  
D. Devakumar ◽  
D.B. Jabaraj ◽  
V.K. Bupesh Raja ◽  
P. Periyasamy

The purpose of this study is to evaluate the mechanical and metallurgical properties of dissimilar metal weld joints between duplex stainless steel/Cold Reduced low carbon Steel (CRS) by Gas Tungsten Arc Welding (GTAW) process. The dissimilar 2 mm thickness plates of duplex stainless steel and cold reduced low carbon steel, conforming to AISI 2205 and IS 513_2008 CR2_D were butt welded by means of gas tungsten arc welding using argon as shielding gas. The butt welding joint arrangement was used for this experiment using E 309L electrode as filler metal. The joints were investigated for mechanical properties and microstructure. Tensile, Hardness and bend tests were carried out to evaluate the mechanical properties. Optical microscopy was used to explore the microstructure. The micro structural examination of the weld region revealed dendritic delta ferrite. Micro examination of DSS base metal revealed elongated grains of austenite (white) with ferrite (Brown). Micro examination of CRS base metal discloses deformed grains of ferrite present in the matrix. Fracture analysis was conducted for the failure part with Scanning Electron Microscope (SEM) and found ductile fracture occurred at CR steel side.


2015 ◽  
Vol 1125 ◽  
pp. 195-199
Author(s):  
Toto Triantoro Budi Wardoyo ◽  
S. Izman ◽  
Safian Sharif ◽  
Hosta Ardhyananta ◽  
Denni Kurniawan

In this paper, Shielded Metal Arc Welding (SMAW) was performed on low carbon steel with three types of butt joint (i.e., square, single V, and double V) and uncapping of the weldment. The welding performance is measured based on the mechanical properties (i.e., strength and hardness). Grain size and microstructure of the weldments were also evaluated. The results show that all tested samples show similar tensile strength, which means there was no significant effect of the type of butt joint type or uncapping. The hardness of the weld metal was found to be slightly higher than that of heat affected zone and base metal, in which both showed similar hardness values. The grain size of the weld metal was also finer than that of heat affected zone and base metal. This trend in hardness and grain size on three regions of the welded sample was the same regardless of the butt joint type and whether the weldment was uncapped or not.


2014 ◽  
Vol 852 ◽  
pp. 178-182
Author(s):  
Shuo Li ◽  
Di Tang ◽  
Hui Bin Wu ◽  
Ji Guang Xiong

The 304 austenite stainless steel and low carbon steel clad plate was fabricated by casting and hot rolling process. The mechanical properties and interface shear strength of clad plates with different thickness after rolling were investigated in detail. The microstructure characteristics of the clad interface were observed by SEM (Scanning Electron Microscope). The phases and chemical composition were analyzed by XRD (X-ray diffraction) and EDS (energy dispersive spectroscopy). Based on the results, the mechanical properties and interface shear strengths meet the requirements of national standards. No visible cracks were observed in the clad interface after bending test. Cr3C2precipitates, Fe3O4oxides and Fe-Cr intermetallic compound were distributed around the interface of clad plate after casting, but a good metallurgical bonding was achieved after hot-rolling.


2018 ◽  
Vol 15 (5) ◽  
pp. 584-591 ◽  
Author(s):  
Tunde Isaac Ogedengbe ◽  
Taiwo Ebenezer Abioye ◽  
Augusta Ijeoma Ekpemogu

Purpose The purpose of this study is to conduct gas tungsten arc dissimilar welding of AISI 304 stainless steel and low carbon steel within a process window so as to investigate the effects of current, speed and gas flow rate (GFR) on the microstructure and mechanical properties of the weldments. Design/methodology/approach The welding experiment was carried out at different combinations of parameters using WN-250S Kaierda electric welding machine. A combination of scanning electron microscopy and energy dispersive X-ray spectroscopy was used to examine the microstructure of the weldments. Micro-hardness and tensile tests were performed using Vickers hardness tester and Instron universal testing machine, respectively. ANOVA was used to analyze the significance of the parameters on the mechanical properties. Findings The microstructure of the weld region is characterized with dendritic structure with the existence of ferrite and austenite phases. The utilized parameters show significant effects on the ultimate tensile strength (UTS) of the weldments. The current and GFR were found to be the most and least significant factors, respectively. Both the grain size and weld penetration contributed to the UTS of the weldments. The UTS (427-886 MPa) increased with decreasing current and welding speed. In all samples, the weld region exhibited higher hardness (297-396 HV) than the HAZ in the base metals (maximum of 223 Â ± 6 HV). All the three factors show significant effect with the welding speed contributing mostly to the hardness of the weld region. Originality/value The parametric combination that gives the optimum mechanical performance of the dissimilar gas tungsten arc weldments of AISI 304 stainless steel and low carbon steel was established.


Sign in / Sign up

Export Citation Format

Share Document