Rapid construction of TiO2/SiO2 composite film on Ti foil as lithium-ion battery anode by plasma discharge in solution

2019 ◽  
Vol 114 (4) ◽  
pp. 043903 ◽  
Author(s):  
Jie Wu ◽  
Xiaodong He ◽  
Guozheng Li ◽  
Jianhua Deng ◽  
Lin Chen ◽  
...  
Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1032 ◽  
Author(s):  
Toki Moritaka ◽  
Yuh Yamashita ◽  
Tomohiro Tojo ◽  
Ryoji Inada ◽  
Yoji Sakurai

We fabricated tin phosphide–carbon (Sn4P3/C) composite film by aerosol deposition (AD) and investigated its electrochemical performance for a lithium-ion battery anode. Sn4P3/C composite powders prepared by a ball milling was used as raw material and deposited onto a stainless steel substrate to form the composite film via impact consolidation. The Sn4P3/C composite film fabricated by AD showed much better electrochemical performance than the Sn4P3 film without complexing carbon. Although both films showed initial discharge (Li+ extraction) capacities of approximately 1000 mAh g−1, Sn4P3/C films retained higher reversible capacity above 700 mAh g−1 after 100 cycles of charge and discharge processes while the capacity of Sn4P3 film rapidly degraded with cycling. In addition, by controlling the potential window in galvanostatic testing, Sn4P3/C composite film retained the reversible capacity of 380 mAh g−1 even after 400 cycles. The complexed carbon works not only as a buffer to suppress the collapse of electrodes by large volume change of Sn4P3 in charge and discharge reactions but also as an electronic conduction path among the atomized active material particles in the film.


2021 ◽  
Vol 494 ◽  
pp. 229712
Author(s):  
Yue-E Huang ◽  
Weilin Lin ◽  
Chenguang Shi ◽  
Li Li ◽  
Kaiqing Fan ◽  
...  

2021 ◽  
Vol 267 ◽  
pp. 124585
Author(s):  
Ali Reza Kamali ◽  
Dongwei Qiao ◽  
Zhongning Shi ◽  
Dexi Wang

2021 ◽  
Vol 23 (6) ◽  
pp. 4030-4038
Author(s):  
Xinghui Liu ◽  
Shiru Lin ◽  
Jian Gao ◽  
Hu Shi ◽  
Seong-Gon Kim ◽  
...  

Simple carbon (nitrogen) doped Mo2P as promoting lithium-ion battery anode materials with extremely low energy barrier and high capacity.


2021 ◽  
Vol 419 ◽  
pp. 129387
Author(s):  
Lirong Cai ◽  
Zheng Li ◽  
Sensen Zhang ◽  
Kaitlyn Prenger ◽  
Michael Naguib ◽  
...  

Author(s):  
Joon Ha Chang ◽  
Jun Young Cheong ◽  
Yoonsu Shim ◽  
Jae Yeol Park ◽  
Sung Joo Kim ◽  
...  

Co3O4 nanograins-interconnected secondary particle (Co3O4 NISP) is proposed as lithium-ion battery anode material that can offer high volumetric capacity by less formation of insulating CoO during lithiation process.


Author(s):  
Nabil Khossossi ◽  
Deobrat Singh ◽  
Amitava Banerjee ◽  
Wei Luo ◽  
Ismail Essaoudi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document