Influence of interply arrangement on inter-laminar shear strength of carbon-Kevlar/epoxy hybrid composites

Author(s):  
F. D. Guled ◽  
H. C. Chittappa
2019 ◽  
Vol 19 ◽  
pp. 322-328
Author(s):  
P. Madhavi ◽  
G. Yadagiri ◽  
A. Naveen ◽  
M.Shravan ◽  
A. Ravi ◽  
...  

2021 ◽  
Vol 1057 (1) ◽  
pp. 012016
Author(s):  
P Madhavi ◽  
K Chandra Shekar ◽  
K Poojith ◽  
P Sai Kumar ◽  
P Usman Khan ◽  
...  

2020 ◽  
Vol 54 (20) ◽  
pp. 2761-2779 ◽  
Author(s):  
Hasan Ulus ◽  
Halil Burak Kaybal ◽  
Volkan Eskizeybek ◽  
Ahmet Avcı

Seawater aging-dominated delamination failure is a critical design parameter for marine composites. Modification of matrix with nanosized reinforcements of fiber-reinforced polymer composites comes forward as an effective way to improve the delamination resistance of marine composites. In this study, we aimed to investigate experimentally the effect of halloysite nanotube nanoreinforcements on the fracture performance of artificial seawater aged basalt–epoxy composites. For this, we introduced various amounts of halloysite nanotubes into the epoxy and the halloysite nanotube–epoxy mixtures were used to impregnate to basalt fabrics via vacuum-assisted resin transfer molding, subsequently. Fracture performances of the halloysite nanotubes modified epoxy and basalt/epoxy composite laminated were evaluated separately. Single edge notched tensile tests were conducted on halloysite nanotube modified epoxy nanocomposites and the average stress intensity factor (KIC) was increased from 1.65 to 2.36 MPa.m1/2 (by 43%) with the incorporation of 2 wt % halloysite nanotubes. The interlaminar shear strength and Mode-I interlaminar fracture toughness (GIC) of basalt–epoxy hybrid composites were enhanced from 36.1 to 42.9 MPa and from 1.22 to 1.44 kJ/m2, respectively. Moreover, the hybrid composites exhibited improved seawater aging performance by almost 52% and 34% in interlaminar shear strength and GIC values compared to the neat basalt-epoxy composites after conditioning in seawater for six months, respectively. We proposed a model to represent fracture behavior of the seawater aged hybrid composite based on scanning electron microscopy and infrared spectroscopy analyses.


Author(s):  
Chandan Kumar ◽  
K.K. Singh ◽  
Prashant Rawat ◽  
Akash Deep ◽  
Rohit Pratyush Behera

Author(s):  
Takahiro MIURA ◽  
Daisuke TABUCHI ◽  
Takao SAJIMA ◽  
Toshiro DOI ◽  
Osamu OHNISHI
Keyword(s):  

2003 ◽  
Vol 2003.1 (0) ◽  
pp. 355-356 ◽  
Author(s):  
Masaaki MISUMI ◽  
Masafumi OHKUBO ◽  
Go AOYAMA

2002 ◽  
Vol 2002 (0) ◽  
pp. 287-288
Author(s):  
Yasuhiro KOBASHI ◽  
Masaaki MISUMI ◽  
Masafumi OHKUBO

Sign in / Sign up

Export Citation Format

Share Document