Determination of the volume fraction in (water-gasoil-air) multiphase flows using a simple and low-cost technique: Artificial neural networks

2019 ◽  
Vol 31 (9) ◽  
pp. 093301 ◽  
Author(s):  
S. Z. Islami rad ◽  
R. Gholipour Peyvandi ◽  
S. Sadrzadeh
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241665
Author(s):  
Predrag M. Milanovic ◽  
Snezana B. Stankovic ◽  
Milada Novakovic ◽  
Dragana Grujic ◽  
Mirjana Kostic ◽  
...  

The development of automated software and the device for determination of wicking of textile materials, using open-source ImageJ libraries for image processing, and newly designed additional algorithm for the determination of threshold, is presented in this paper. The description of the device, design of the open-source software “Kapilarko”, as well as an explanation of the steps: image processing, threshold determination and reading of wicking height, are provided. We have also investigated the possibility of using the artificial neural networks for automatic recognition of the wicking height. The results showed that the recognition of the wet area of the sample, based on the application of artificial neural networks was in a very good agreement with the experimental data. The device's utility for the measurement of wicking ability of textile materials was proved by testing various knitted fabrics. The constructed device has the advantages of providing automated measurement and minimization of the subjective errors of the operators; extremely fast or long-term measurements; digital recording of results; consistency of experimental conditions; possibility of using water instead of colors and, last but not least, low cost of the device. Considering the importance and frequent measurements of wicking ability of textile materials, the advantages of the presented device, as well as the fact that commercial software without publishing the source-code, are used for most of the available devices, we believe that our idea to design the automated software and device by applying the "open-source" approach, will be of benefit to scientists and engineers in using or improving wicking experiments.


2021 ◽  
Vol 184 ◽  
pp. 106096
Author(s):  
Mailson Freire de Oliveira ◽  
Adão Felipe dos Santos ◽  
Elizabeth Haruna Kazama ◽  
Glauco de Souza Rolim ◽  
Rouverson Pereira da Silva

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


2020 ◽  
Vol 12 (1) ◽  
pp. 718-725
Author(s):  
Maria Mrówczyńska ◽  
Jacek Sztubecki ◽  
Małgorzata Sztubecka ◽  
Izabela Skrzypczak

Abstract Objects’ measurements often boil down to the determination of changes due to external factors affecting on their structure. The estimation of changes in a tested object, in addition to proper measuring equipment, requires the use of appropriate measuring methods and experimental data result processing methods. This study presents a statement of results of geometrical measurements of a steel cylinder that constitutes the main structural component of the historical weir Czersko Polskie in Bydgoszcz. In the initial stage, the estimation of reliable changes taking place in the cylinder structure involved the selection of measuring points essential for mapping its geometry. Due to the continuous operation of the weir, the points covered only about one-third of the cylinder area. The set of points allowed us to determine the position of the cylinder axis as well as skews and deformations of the cylinder surface. In the next stage, the use of methods based on artificial neural networks allowed us to predict the changes in the tested object. Artificial neural networks have proved to be useful in determining displacements of building structures, particularly hydro-technical objects. The above-mentioned methods supplement classical measurements that create the opportunity for carrying out additional analyses of changes in a spatial position of such structures. The purpose of the tests is to confirm the suitability of artificial neural networks for predicting displacements of building structures, particularly hydro-technical objects.


Sign in / Sign up

Export Citation Format

Share Document