Performance of anaerobic membrane bioreactors (AnMBRs) with different concentration of powdered activated carbon (PAC) at mesophilic regime in membrane fouling control

2019 ◽  
Author(s):  
Ling Yong Wong ◽  
Tung Chong ◽  
Po Kim Lo ◽  
Mohammed J. K. Bashir ◽  
Choon Aun Ng
2017 ◽  
Vol 75 (10) ◽  
pp. 2350-2357 ◽  
Author(s):  
A. I. Zouboulis ◽  
P. K. Gkotsis ◽  
D. X. Zamboulis ◽  
M. G. Mitrakas

Membrane fouling is considered to be the most serious drawback in wastewater treatment when using membrane bioreactors (MBRs), leading to membrane permeability decrease and efficiency deterioration. This work aims to develop an integrated methodology for membrane fouling control, using powdered activated carbon (PAC), which will enhance the adsorption of soluble microbial products (SMP) and improve membrane filterability, by altering the mixed liquor's characteristics. Reversible fouling was assessed in terms of sludge filterability measurements, according to the standard time-to-filter (TTF) method, while irreversible fouling was assessed in terms of SMP removal. Results showed that the addition of PAC at the concentration of 3 g/L in the mixed liquor reduced SMP concentration and enhanced substantially the sludge filterability. Furthermore, the TTFPAC/TTFno PAC ratios were lower, than the corresponding SMPPAC./SMPno PAC ratios, indicating that the batch-mode, short-term addition of PAC promotes the reversible, rather than the irreversible fouling mitigation.


2021 ◽  
Vol 40 ◽  
pp. 101867
Author(s):  
Weonjung Sohn ◽  
Wenshan Guo ◽  
Huu Hao Ngo ◽  
Lijuan Deng ◽  
Dongle Cheng ◽  
...  

2012 ◽  
Vol 65 (5) ◽  
pp. 954-961 ◽  
Author(s):  
Maxime Remy ◽  
Hardy Temmink ◽  
Wim Rulkens

Previous research has demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactors (MBRs). This effect was related to the formation of stronger sludge flocs, which are less sensitive to shear. In this contribution the long-term effect of PAC addition was studied by running two parallel MBRs on sewage. To one of these, PAC was dosed and a lower fouling tendency of the sludge was verified, with a 70% longer sustainable filtration time. Low PAC dosages showed additional advantages with regard to oxygen transfer and dewaterability, which may provide savings on operational costs.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 363-371 ◽  
Author(s):  
K-H. Choo ◽  
I-J. Kang ◽  
S-H. Yoon ◽  
H. Park ◽  
J-H. Kim ◽  
...  

Various fouling control methods were investigated for polymeric and ceramic microfiltration membranes in the anaerobic membrane bioreactors where inorganic precipitates and/or fine colloids have been recently known as the most significant foulants: (i) Substantial improvement of flux was achieved by backfeeding of acidic wastewater through the membrane module. The backfeeding mode formed an acidic environment around the membrane pores and thus suppressed struvite formation. (ii) Struvite precipitation was also mitigated when an additional combined dialysis/zeolite unit was attached to the bioreactor. With this combined unit the flux improvement for the ceramic membrane, where struvite had a severer fouling effect, was achieved more significantly than that for the polymeric membrane. (iii) To control the deposition of organics and fine colloids onto the polymeric membrane, powdered activated carbon (PAC) was added into the bioreactor, which gave rise to the reduction of specific cake resistances of biosolids through the sorption and/or coagulation of dissolved and colloidal matter. (iv) The hydrophilic modification of polypropylene (PP) membranes by graft polymerization reduced membrane fouling. Its effectiveness was most substantial at 70% of the degree of grafting, indicating that there was an optimal degree of grafting. This is possibly due to the steric hindrance of grafted polymer chains and the increase in the hydrophilicity of the grafted PP membrane.


2012 ◽  
Vol 65 (9) ◽  
pp. 1540-1547 ◽  
Author(s):  
B. E. L. Baêta ◽  
R. L. Ramos ◽  
D. R. S. Lima ◽  
S. F. Aquino

This work investigated the use of submerged anaerobic membrane bioreactors (SAMBRs) in the presence and absence of powdered activated carbon (PAC) for the treatment of genuine textile wastewater. The reactors were operated at 35 °C with an HRT of 24 h and the textile effluent was diluted (1:10) with nutrient solution containing yeast extract as the source of the redox mediation riboflavin. The results showed that although both SAMBRs exhibited an excellent performance, the presence of PAC inside SAMBR-1 enhanced reactor stability and removal efficiency of chemical oxygen demand (COD), volatile fatty acids (VFA), turbidity and color. The median removal efficiencies of COD and color in SAMBR-1 were, 90 and 94% respectively; whereas for SAMBR-2 (without PAC) these values were 79 and 86%, In addition, the median values of turbidity and VFA were 8 NTU and 8 mg/L for SAMBR-1 and 14 NTU and 26 mg/L for SAMBR-2, indicating that the presence of PAC inside SAMBR-1 led to the production of an anaerobic effluent of high quality regarding such parameters.


Author(s):  
Prattakorn Sittisom ◽  
Obey Gotore ◽  
Rameshprabu Ramaraj ◽  
Giang Tran Van ◽  
Yuwalee Unpaprom ◽  
...  

Anaerobic Membrane Bioreactor (AnMBR) technology in recent years has been actively used for municipal and industrial wastewater treatment. Also, AnMBR technology has been considered as an alternative wastewater treatment application over conventional activated sludge system. AnMBRs are best possible operated with flat sheet, hollow fiber, or tubular membranes both in the microfiltration or in the ultrafiltration, but on ceramic membrane use has not been reported widely. AnMBRs are a desirable technology that needs additional research efforts and development. However, membrane fouling, which continues a major problem for all membrane bioreactors, seems much more serious under anaerobic than aerobic conditions. In this review, membrane fouling issues (including membrane fouling mechanism, classification, influent parameters, and mitigation) were discussed and summarized. Moreover, in fouling control, biogas sparging and recirculation (i.e. methane production) were addressed. Lastly, future research perspectives relating to its application and membrane fouling research are planned.


2010 ◽  
Vol 62 (1) ◽  
pp. 172-179 ◽  
Author(s):  
W. Yang ◽  
M. Paetkau ◽  
N. Cicek

Effects of powdered activated carbon (PAC) dosing on the overall performance of membrane bioreactors (MBR) were investigated in two bench-scale submerged MBRs. Positive impacts of PAC dosing on membrane fouling and the removal of 17β-estradiol (E2) and 17α-ethyinylestradiol (EE2) were demonstrated over a six-month stable operational period. PAC dosing in the MBR increased the removal rates of E2 and EE2 by 3.4% and 15.8%, respectively. The average soluble extracellular polymeric substances (EPS) and colloidal total organic carbon (TOC) concentrations in the PAC-MBR sludge was 60.1% and 61.8% lower than the control MBR sludge, respectively. Lower soluble EPS and colloidal TOC concentrations in the PAC-MBR sludge resulted in a slower rate of trans-membrane pressure (TMP) increase during MBRs operation, which could prolong the lifespan of membranes. Cost assessment showed that PAC dosing could reduce the operating cost for membrane cleaning and/or membrane replacement by about 25%. The operating cost for PAC dosing could be offset by the benefit from its reducing the cost for membrane maintenance.


2010 ◽  
Vol 45 (7) ◽  
pp. 873-889 ◽  
Author(s):  
Choon Aun Ng ◽  
Darren Sun ◽  
Jinsong Zhang ◽  
Bing Wu ◽  
Anthony G. Fane

Sign in / Sign up

Export Citation Format

Share Document