Structure and mechanical properties of polymetallic samples from 321 stainless steel and C11000 copper obtained by the electron-beam 3D-printing

2019 ◽  
Author(s):  
K. S. Osipovich ◽  
A. V. Vorontsov ◽  
L. L. Zhukov
2021 ◽  
Vol 23 (4) ◽  
pp. 111-124
Author(s):  
Vasiliy Fedorov ◽  
◽  
Aleksandr Rygin ◽  
Vasiliy Klimenov ◽  
Nikita Martyushev ◽  
...  

Introduction. As of today, additive technologies are among the most promising methods to manufacture various parts. They allow producing parts of complex shapes and provide their quality structure. The quality of the structure formed depends on numerous parameters: equipment type, its operation mode, materials, shielding medium, etc. Large international companies producing 3D-printers provide technological guidelines for working on it. Such guidelines include the information on the manufacturers of raw materials (printing powders), products their equipment can work with and the operation modes that should be used with such powders. These parameters should be investigated to use it on the domestic equipment developed within the framework of research programs and import substitution programs. The researchers and developers of 3D-printing equipment frequently run into a problem of using currently available raw materials for obtaining parts possessing minimal porosity, uniform structure and mechanical properties similar to that of at least cast blanks. One of the widely used materials for 3D-printing is stainless steel. It has high corrosion resistance, which reduces the requirements to the medium in which 3D printing is carried out. Manufactured stainless steel products have a good combination of strength and plastic characteristics. The aim of the study is to obtain stainless steel specimens possessing minimal number of micro- and macro-defects and uniform structure by the method of wire arc additive manufacturing using an electron-beam setup developed at Tomsk Polytechnic University. The methods to study the AISI 308LSi stainless steel 3D-printed specimens are as follows: XRD analysis, tomography, chemical analysis, metallographic analysis, microhardness testing. Results and discussion. It is established that the AISI 308LSi stainless steel specimens manufactured using the electron-beam 3D-printing setup contain no macro-defects in the bulk of the specimens. There are small microdefects represented by residual gas pores with the dimensions of no more than 5.2 μm. The microstructure of the specimens is formed close to that of coarse-grained cast austenite steels and consists of columnar grains of the γ-Fe austenite matrix and high-temperature ferrite. The interfaces between the wire layers are not pronounced; however, there are small differences in phase composition. Based on the analysis of the results obtained, it is established that the use of electron-beam 3D-printing for the manufacture of parts from AISI 308LSi steel gives a structure similar to cast austenitic steels. Macro-defects do not appear, and the number of gas pores is small.


2018 ◽  
Author(s):  
A. V. Chumaevskii ◽  
E. S. Khoroshko ◽  
K. N. Kalashnikov ◽  
A. V. Filippov ◽  
T. A. Kalashnikova

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Sheida Sarafan ◽  
Priti Wanjara ◽  
Jean-Benoît Lévesque ◽  
Javad Gholipour ◽  
Henri Champliaud ◽  
...  

In this study, the integrity of electron beam- (EB-) welded CA6NM—a grade of 13% Cr-4% Ni martensitic stainless steel—was assessed through the entire joint thickness of 90 mm after postweld heat treatment (PWHT). The joints were characterized by examining the microstructure, residual stresses, global mechanical properties (static tensile, Charpy impact, and bend), and local properties (yield strength and strain at fracture) in the metallurgically modified regions of the EB welds. The applied PWHT tempered the “fresh” martensite present in the microstructure after welding, which reduced sufficiently the hardness (<280 HV) and residual stresses (<100 MPa) to meet the requirements for hydroelectric turbine assemblies. Also, the properties of the EB joints after PWHT passed the minimum acceptance criteria specified in ASME sections VIII and IX. Specifically, measurement of the global tensile properties indicated that the tensile strengths of the EB welds in the transverse and longitudinal directions were on the same order as that of the base metal (BM). Evaluation of the local tensile properties using a digital image correlation (DIC) methodology showed higher local yield strengths in the fusion zone (FZ) and heat-affected zone (HAZ) of 727 MPa and 740 MPa, respectively, relative to the BM value of 663 MPa. Also, the average impact energies for the FZ and HAZ were 63 J and 148 J, respectively, and attributed to the different failure mechanisms in the HAZ (dimples) versus the FZ (quasi-cleavage consisting of facets and dimples). This study shows that the application of PWHT plays an important role in improving the weld quality and performance of EB-welded CA6NM and provides the essential data for validating the design and manufacturing process for next-generation hydroelectric turbine products.


2017 ◽  
Vol 48 (4) ◽  
pp. 1771-1787 ◽  
Author(s):  
John W. Elmer ◽  
G. Fred Ellsworth ◽  
Jeffrey N. Florando ◽  
Ilya V. Golosker ◽  
Rupalee P. Mulay

Sign in / Sign up

Export Citation Format

Share Document