Transformation law of microstructure evolution and mechanical properties of electron beam freeform fabricated 321 austenitic stainless steel

Vacuum ◽  
2021 ◽  
pp. 110594
Author(s):  
Qianxing Yin ◽  
Guoqing Chen ◽  
Hui Cao ◽  
Ge Zhang ◽  
Binggang Zhang ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1557 ◽  
Author(s):  
Yi Xiong ◽  
Yun Yue ◽  
Tiantian He ◽  
Yan Lu ◽  
Fengzhang Ren ◽  
...  

The impacts of rolling temperature on phase transformations and mechanical properties were investigated for AISI 316LN austenitic stainless steel subjected to rolling at cryogenic and room temperatures. The microstructure evolution and the mechanical properties were investigated by means of optical, scanning, and transmission electron microscopy, an X-ray diffractometer, microhardness tester, and tensile testing system. Results showed that strain-induced martensitic transformation occurred at both deformation temperatures, and the martensite volume fraction increased with the deformation. Compared with room temperature rolling, cryorolling substantially enhanced the martensite transformation rate. At 50% deformation, it yielded the same fraction as the room temperature counterpart at 90% strain, while at 70%, it totally transformed the austenite to martensite. The strength and hardness of the stainless steel increased remarkably with the deformation, but the corresponding elongation decreased dramatically. Meanwhile, the tensile fracture morphology changed from a typical ductile rupture to a mixture of ductile and quasi-cleavage fracture. The phase transformation and deformation mechanisms differed at two temperatures, with the martensite deformation contributing to the former, and austenite deformation to the latter. Orientations between the transformed martensite and its parent phase followed the K–S (Kurdjumov–Sachs) relationship.


2012 ◽  
Vol 268-270 ◽  
pp. 291-296
Author(s):  
Li Min Wang ◽  
Zhi Hua Gong ◽  
Gang Yang ◽  
Zheng Dong Liu ◽  
Han Sheng Bao

Ultrafine-grain or even nano-grain microstructure can be made by equal channel angular pressing (ECAP), mainly resulting from shear strain. The authors experimentally investigated 00Cr18Ni12 austenitic stainless steel and its mechanical properties during and after ECAP. The results showed that because of larger shear stress, many slipping bands occured inside grains, with the increase of pressing pass, the slipping bands may interact with each other to separate slipping bands into sub-grains, finally, the sub-grains transformed into new grains with large angular boundaries. The grain size was about 200nm after the 7th pass. After the 1st and 2nd pass, the tensile strength was higher 93% and 144% than that without ECAP, the yield strength was 5.3 and 6.6 times of that without ECAP respectively.


Sign in / Sign up

Export Citation Format

Share Document