Investigation of the impact of structural gaps on the hydrodynamics of the flow shell and tube heat exchanger

2019 ◽  
Author(s):  
V. N. Gushshamova ◽  
S. V. Mordanov ◽  
I. E. Shtyrlyaev
2018 ◽  
Author(s):  
Javier Bonilla

In this study, a shell-and-tube heat exchanger (STHX) design based on seven continuous independent design variables is proposed. Delayed Rejection Adaptive Metropolis hasting (DRAM) was utilized as a powerful tool in the Markov chain Monte Carlo (MCMC) sampling method. This Reverse Sampling (RS) method was used to find the probability distribution of design variables of the shell and tube heat exchanger. Thanks to this probability distribution, an uncertainty analysis was also performed to find the quality of these variables. In addition, a decision-making strategy based on confidence intervals of design variables and on the Total Annual Cost (TAC) provides the final selection of design variables. Results indicated high accuracies for the estimation of design variables which leads to marginally improved performance compared to commonly used optimization methods. In order to verify the capability of the proposed method, a case of study is also presented, it shows that a significant cost reduction is feasible with respect to multi-objective and single-objective optimization methods. Furthermore, the selected variables have good quality (in terms of probability distribution) and a lower TAC was also achieved. Results show that the costs of the proposed design are lower than those obtained from optimization method reported in previous studies. The algorithm was also used to determine the impact of using probability values for the design variables rather than single values to obtain the best heat transfer area and pumping power. In particular, a reduction of the TAC up to 3.5% was achieved in the case considered.


Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Sign in / Sign up

Export Citation Format

Share Document