scholarly journals Petrov types D and II perfect‐fluid solutions in generalized Kerr–Schild form

1988 ◽  
Vol 29 (4) ◽  
pp. 937-944 ◽  
Author(s):  
F. Martín‐Pascual ◽  
J. M. M. Senovilla
Keyword(s):  
Filomat ◽  
2019 ◽  
Vol 33 (13) ◽  
pp. 4251-4260
Author(s):  
Young Suh ◽  
Uday De

In the present paper we characterize a type of spacetimes, called almost pseudo Z-symmetric spacetimes A(PZS)4. At first, we obtain a condition for an A(PZS)4 spacetime to be a perfect fluid spacetime and Roberson-Walker spacetime. It is shown that an A(PZS)4 spacetime is a perfect fluid spacetime if the Z tensor is of Codazzi type. Next we prove that such a spacetime is the Roberson-Walker spacetime and can be identified with Petrov types I, D or O[3], provided the associated scalar ? is constant. Then we investigate A(PZS)4 spacetimes satisfying divC = 0 and state equation is derived. Also some physical consequences are outlined. Finally, we construct a metric example of an A(PZS)4 spacetime.


2016 ◽  
Vol 12 (3) ◽  
pp. 4350-4355
Author(s):  
VIBHA SRIVASTAVA ◽  
P. N. PANDEY

The object of the present paper is to study a perfect fluid K¨ahlerspacetime. A perfect fluid K¨ahler spacetime satisfying the Einstein field equation with a cosmological term has been studied and the existence of killingand conformal killing vectors have been discussed. Certain results related to sectional curvature for pseudo projectively flat perfect fluid K¨ahler spacetime have been obtained. Dust model for perfect fluid K¨ahler spacetime has also been studied.


2021 ◽  
Vol 62 (3) ◽  
pp. 032501
Author(s):  
U. C. De ◽  
S. K. Chaubey ◽  
S. Shenawy

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Erick Chacón ◽  
Silvia Nagy ◽  
Chris D. White

Abstract The Weyl double copy is a procedure for relating exact solutions in biadjoint scalar, gauge and gravity theories, and relates fields in spacetime directly. Where this procedure comes from, and how general it is, have until recently remained mysterious. In this paper, we show how the current form and scope of the Weyl double copy can be derived from a certain procedure in twistor space. The new formalism shows that the Weyl double copy is more general than previously thought, applying in particular to gravity solutions with arbitrary Petrov types. We comment on how to obtain anti-self-dual as well as self-dual fields, and clarify some conceptual issues in the twistor approach.


Sign in / Sign up

Export Citation Format

Share Document