scholarly journals Becchi–Rouet–Stora–Tyutin invariant formulation of spontaneously broken gauge theory in a generalized differential geometry

2000 ◽  
Vol 41 (4) ◽  
pp. 1788-1800 ◽  
Author(s):  
Yoshitaka Okumura
Author(s):  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

We discuss the nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations and derive their corresponding conserved charges in the case of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) self-interacting non-Abelian gauge theory (without any interaction with matter fields). We point out a set of novel features that emerge out in the BRST and co-BRST analysis of the above 2D gauge theory. The algebraic structures of the symmetry operators (and corresponding conserved charges) and their relationship with the cohomological operators of differential geometry are established too. To be more precise, we demonstrate the existence of a single Lagrangian density that respects the continuous symmetries which obey proper algebraic structure of the cohomological operators of differential geometry. In the literature, such observations have been made for the coupled (but equivalent) Lagrangian densities of the 4D non-Abelian gauge theory. We lay emphasis on the existence and properties of the Curci–Ferrari (CF)-type restrictions in the context of (anti-)BRST and (anti-)co-BRST symmetry transformations and pinpoint their key differences and similarities. All the observations, connected with the (anti-)co-BRST symmetries, are completely novel.


2001 ◽  
Vol 16 (19) ◽  
pp. 3203-3216 ◽  
Author(s):  
HIROMI KASE ◽  
KATSUSADA MORITA ◽  
YOSHITAKA OKUMURA

Connes' gauge theory on M4 × Z2 is reformulated in the Lagrangian level. It is pointed out that the field strength in Connes' gauge theory is not unique. We explicitly construct a field strength different from Connes' and prove that our definition leads to the generation-number independent Higgs potential. It is also shown that the nonuniqueness is related to the assumption that two different extensions of the differential geometry are possible when the extra one-form basis χ is introduced to define the differential geometry on M4 × Z2. Our reformulation is applied to the standard model based on Connes' color-flavor algebra. A connection between the unimodularity condition and the electric charge quantization is then discussed in the presence or absence of νR.


1990 ◽  
Vol 31 (2) ◽  
pp. 323-330 ◽  
Author(s):  
Michel Dubois‐Violette ◽  
Richard Kerner ◽  
John Madore

Sign in / Sign up

Export Citation Format

Share Document