continuous symmetries
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Shun Zhou

Abstract Three-flavor neutrino oscillations in matter can be described by three effective neutrino masses mi (for i = 1, 2, 3) and the effective mixing matrix Vαi (for α = e, µ, τ and i = 1, 2, 3). When the matter parameter a ≡ 2√2GFNeE is taken as an independent variable, a complete set of first-order ordinary differential equations for m2 i and |Vαi|2have been derived in the previous works. In the present paper, we point out that such a system of differential equations possesses both the continuous symmetries characterized by one-parameter Lie groups and the discrete symmetry associated with the permutations of three neutrino mass eigenstates. The implications of these symmetries for solving the differential equations and looking for differential invariants are discussed.


Author(s):  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

We discuss the nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations and derive their corresponding conserved charges in the case of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) self-interacting non-Abelian gauge theory (without any interaction with matter fields). We point out a set of novel features that emerge out in the BRST and co-BRST analysis of the above 2D gauge theory. The algebraic structures of the symmetry operators (and corresponding conserved charges) and their relationship with the cohomological operators of differential geometry are established too. To be more precise, we demonstrate the existence of a single Lagrangian density that respects the continuous symmetries which obey proper algebraic structure of the cohomological operators of differential geometry. In the literature, such observations have been made for the coupled (but equivalent) Lagrangian densities of the 4D non-Abelian gauge theory. We lay emphasis on the existence and properties of the Curci–Ferrari (CF)-type restrictions in the context of (anti-)BRST and (anti-)co-BRST symmetry transformations and pinpoint their key differences and similarities. All the observations, connected with the (anti-)co-BRST symmetries, are completely novel.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 521
Author(s):  
Sisi Zhou ◽  
Zi-Wen Liu ◽  
Liang Jiang

Covariant codes are quantum codes such that a symmetry transformation on the logical system could be realized by a symmetry transformation on the physical system, usually with limited capability of performing quantum error correction (an important case being the Eastin–Knill theorem). The need for understanding the limits of covariant quantum error correction arises in various realms of physics including fault-tolerant quantum computation, condensed matter physics and quantum gravity. Here, we explore covariant quantum error correction with respect to continuous symmetries from the perspectives of quantum metrology and quantum resource theory, establishing solid connections between these formerly disparate fields. We prove new and powerful lower bounds on the infidelity of covariant quantum error correction, which not only extend the scope of previous no-go results but also provide a substantial improvement over existing bounds. Explicit lower bounds are derived for both erasure and depolarizing noises. We also present a type of covariant codes which nearly saturates these lower bounds.


2021 ◽  
pp. 52-64
Author(s):  
Adrian P Sutton

Symmetry arises not only in the invariance of an object to certain operations, but also in invariance of the equations governing motion of particles. Noether’s theorem connects continuous symmetries of equations of motion to conservation laws. The concept of broken symmetry arises in phase changes and topological defects, such as dislocations and disclinations. The principle of symmetry compensation reveals a deep sense in which symmetry is never destroyed – broken symmetries relate variants of an object displaying reduced symmetry. Symmetry plays a fundamental role in characterising the physical properties of crystals through Neumann’s principle. The concept of quasiperiodicity is introduced and it is shown how it is related to periodicity in a higher dimensional crystal.


Author(s):  
Jean Zinn-Justin

Most quantum field theories (QFT) of physical interest exhibit symmetries, exact symmetries or symmetries with soft (e.g. linear) breaking. This chapter deals only with linear continuous symmetries corresponding to compact Lie groups. When the bare action has symmetry properties, to preserve the symmetry it is first necessary to find a symmetric regularization. The symmetry properties of the QFT then imply relations between connected correlation functions, and vertex functions, called Ward–Takahashi (WT) identities, which describe the physical consequences of the symmetry. WT identities also constrain UV divergences, and the counter-terms that render the theory finite are not of most general form allowed by power counting. As a consequence the renormalized action is expected to keep some trace of the initial symmetry. Such an analysis is based on a perturbative loop expansion. More generally, some non-trivial relations survive when to the action are added terms that induce a soft breaking of symmetry (i.e. by relevant terms). The specific examples of linear symmetry breaking, and the very important limiting case of spontaneous symmetry breaking, and quadratic symmetry breaking are examined. Finally, as an application, the example of chiral symmetry breaking in low-energy effective models of hadron physics is discussed.


2021 ◽  
Author(s):  
Iman Marvian

Abstract According to an elementary result in quantum computing, any unitary transformation on a composite system can be generated using 2-local unitaries, i.e., those that act only on two subsystems. Beside its fundamental importance in quantum computing, this result can also be regarded as a statement about the dynamics of systems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all symmetric unitaries on that system? Surprisingly, it turns out that the answer is negative in the case of continuous symmetries, such as U(1) and SU(2): generic symmetric unitaries cannot be implemented, even approximately, using local symmetric unitaries. In the context of quantum thermodynamics this means that generic energy-conserving unitary transformations on a composite system cannot be implemented by applying local energy-conserving unitary transformations on the components. We also show how this no-go theorem can be circumvented via catalysis: any globally energy-conserving unitary can be implemented using a sequence of 2-local energy-conserving unitaries, provided that one can use a single ancillary qubit (catalyst).


2020 ◽  
Vol 10 (4) ◽  
Author(s):  
Philippe Faist ◽  
Sepehr Nezami ◽  
Victor V. Albert ◽  
Grant Salton ◽  
Fernando Pastawski ◽  
...  

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Saurav Das ◽  
Anson Hook

Abstract While non-linear realizations of continuous symmetries feature derivative interactions and have no potential, non-linear realizations of discrete symmetries feature non-derivative interactions and have a highly suppressed potential. These Goldstone bosons of discrete symmetries have a non-zero potential, but the potential generated from quantum corrections is inherently very highly suppressed. We explore various discrete symmetries and to what extent the potential is suppressed for each of them.


Sign in / Sign up

Export Citation Format

Share Document