Influence of thermal boundary conditions on the stability of thermocapillary-driven convection at low Prandtl numbers

1997 ◽  
Vol 9 (6) ◽  
pp. 1621-1634 ◽  
Author(s):  
Jānis Priede ◽  
Gunter Gerbeth
Author(s):  
Steffen Straub ◽  
Pourya Forooghi ◽  
Luca Marocco ◽  
Thomas Wetzel ◽  
Ricardo Vinuesa ◽  
...  

1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


1970 ◽  
Vol 37 (2) ◽  
pp. 384-392 ◽  
Author(s):  
M. Baruch ◽  
O. Harari ◽  
J. Singer

The stability of simply supported conical shells under axial compression is investigated for 4 different sets of in-plane boundary conditions with a linear Donnell-type theory. The first two stability equations are solved by the assumed displacement, while the third is solved by a Galerkin procedure. The boundary conditions are satisfied with 4 unknown coefficients in the expression for u and v. Both circumferential and axial restraints are found to be of primary importance. Buckling loads about half the “classical” ones are obtained for all but the stiffest simple supports SS4 (v = u = 0). Except for short shells, the effects do not depend on the length of the shell. The physical reason for the low buckling loads in the SS3 case is explained and the essential difference between cylinder and cone in this case is discussed. Buckling under combined axial compression and external or internal pressure is studied and interaction curves have been calculated for the 4 sets of in-plane boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document