Second- and third-order longitudinal velocity structure functions in a fully developed turbulent channel flow

1997 ◽  
Vol 9 (11) ◽  
pp. 3465-3471 ◽  
Author(s):  
R. A. Antonia ◽  
T. Zhou ◽  
G. P. Romano
2017 ◽  
Vol 820 ◽  
pp. 341-369 ◽  
Author(s):  
S. L. Tang ◽  
R. A. Antonia ◽  
L. Djenidi ◽  
L. Danaila ◽  
Y. Zhou

The effect of large-scale forcing on the second- and third-order longitudinal velocity structure functions, evaluated at the Taylor microscale $r=\unicode[STIX]{x1D706}$, is assessed in various turbulent flows at small to moderate values of the Taylor microscale Reynolds number $R_{\unicode[STIX]{x1D706}}$. It is found that the contribution of the large-scale terms to the scale by scale energy budget differs from flow to flow. For a fixed $R_{\unicode[STIX]{x1D706}}$, this contribution is largest on the centreline of a fully developed channel flow but smallest for stationary forced periodic box turbulence. For decaying-type flows, the contribution lies between the previous two cases. Because of the difference in the large-scale term between flows, the third-order longitudinal velocity structure function at $r=\unicode[STIX]{x1D706}$ differs from flow to flow at small to moderate $R_{\unicode[STIX]{x1D706}}$. The effect on the second-order velocity structure functions appears to be negligible. More importantly, the effect of $R_{\unicode[STIX]{x1D706}}$ on the scaling range exponent of the longitudinal velocity structure function is assessed using measurements of the streamwise velocity fluctuation $u$, with $R_{\unicode[STIX]{x1D706}}$ in the range 500–1100, on the axis of a plane jet. It is found that the magnitude of the exponent increases as $R_{\unicode[STIX]{x1D706}}$ increases and the rate of increase depends on the order $n$. The trend of published structure function data on the axes of an axisymmetric jet and a two-dimensional wake confirms this dependence. For a fixed $R_{\unicode[STIX]{x1D706}}$, the exponent can vary from flow to flow and for a given flow, the larger $R_{\unicode[STIX]{x1D706}}$ is, the closer the exponent is to the value predicted by Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941a, pp. 299–303) (hereafter K41). The major conclusion is that the finite Reynolds number effect, which depends on the flow, needs to be properly accounted for before determining whether corrections to K41, arising from the intermittency of the energy dissipation rate, are needed. We further point out that it is imprudent, if not incorrect, to associate the finite Reynolds number effect with a consequence of the modified similarity hypothesis introduced by Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82–85) (K62); we contend that this association has misled the vast majority of post K62 investigations of the consequences of K62.


2018 ◽  
Vol 75 (3) ◽  
pp. 943-964 ◽  
Author(s):  
Khaled Ghannam ◽  
Gabriel G. Katul ◽  
Elie Bou-Zeid ◽  
Tobias Gerken ◽  
Marcelo Chamecki

Abstract The low-wavenumber regime of the spectrum of turbulence commensurate with Townsend’s “attached” eddies is investigated here for the near-neutral atmospheric surface layer (ASL) and the roughness sublayer (RSL) above vegetation canopies. The central thesis corroborates the significance of the imbalance between local production and dissipation of turbulence kinetic energy (TKE) and canopy shear in challenging the classical distance-from-the-wall scaling of canonical turbulent boundary layers. Using five experimental datasets (two vegetation canopy RSL flows, two ASL flows, and one open-channel experiment), this paper explores (i) the existence of a low-wavenumber k−1 scaling law in the (wind) velocity spectra or, equivalently, a logarithmic scaling ln(r) in the velocity structure functions; (ii) phenomenological aspects of these anisotropic scales as a departure from homogeneous and isotropic scales; and (iii) the collapse of experimental data when plotted with different similarity coordinates. The results show that the extent of the k−1 and/or ln(r) scaling for the longitudinal velocity is shorter in the RSL above canopies than in the ASL because of smaller scale separation in the former. Conversely, these scaling laws are absent in the vertical velocity spectra except at large distances from the wall. The analysis reveals that the statistics of the velocity differences Δu and Δw approach a Gaussian-like behavior at large scales and that these eddies are responsible for momentum/energy production corroborated by large positive (negative) excursions in Δu accompanied by negative (positive) ones in Δw. A length scale based on TKE dissipation collapses the velocity structure functions at different heights better than the inertial length scale.


2010 ◽  
Vol 22 (S1) ◽  
pp. 215-218 ◽  
Author(s):  
Jian-ping Luo ◽  
Zhi-ming Lu ◽  
TatsLo Ushijima ◽  
Osami Kitoh ◽  
Xiang Qiu ◽  
...  

2004 ◽  
Vol 16 (2) ◽  
pp. 482-485 ◽  
Author(s):  
Yves Gagne ◽  
Bernard Castaing ◽  
Christophe Baudet ◽  
Yann Malécot

2017 ◽  
Vol 823 ◽  
pp. 498-510 ◽  
Author(s):  
Charitha M. de Silva ◽  
Dominik Krug ◽  
Detlef Lohse ◽  
Ivan Marusic

The scaling behaviour of the longitudinal velocity structure functions $\langle (\unicode[STIX]{x1D6E5}_{r}u)^{2p}\rangle ^{1/p}$ (where $2p$ represents the order) is studied for various wall-bounded turbulent flows. It has been known that for very large Reynolds numbers within the logarithmic region, the structure functions can be described by $\langle (\unicode[STIX]{x1D6E5}_{r}u)^{2p}\rangle ^{1/p}/U_{\unicode[STIX]{x1D70F}}^{2}\approx D_{p}\ln (r/z)+E_{p}$ (where $r$ is the longitudinal distance, $z$ the distance from the wall, $U_{\unicode[STIX]{x1D70F}}$ the friction velocity and $D_{p}$, $E_{p}$ are constants) in accordance with Townsend’s attached eddy hypothesis. Here we show that the ratios $D_{p}/D_{1}$ extracted from plots between structure functions – in the spirit of the extended self-similarity hypothesis – have further reaching universality for the energy containing range of scales. Specifically, we confirm that this description is universal across wall-bounded flows with different flow geometries, and also for both the longitudinal and transversal structure functions, where previously the scaling has been either difficult to discern or differences have been reported when examining the direct representation of $\langle (\unicode[STIX]{x1D6E5}_{r}u)^{2p}\rangle ^{1/p}$. In addition, we present evidence of this universality at much lower Reynolds numbers, which opens up avenues to examine structure functions that are not readily available from high Reynolds number databases.


2002 ◽  
Vol 468 ◽  
pp. 317-326 ◽  
Author(s):  
REGINALD J. HILL

Equations that follow from the Navier–Stokes equation and incompressibility but with no other approximations are ‘exact’. Exact equations relating second- and third- order structure functions are studied, as is an exact incompressibility condition on the second-order velocity structure function. Opportunities for investigations using these equations are discussed. Precisely defined averaging operations are required to obtain exact averaged equations. Ensemble, temporal and spatial averages are all considered because they produce different statistical equations and because they apply to theoretical purposes, experiment and numerical simulation of turbulence. Particularly simple exact equations are obtained for the following cases: (i) the trace of the structure functions, (ii) DNS that has periodic boundary conditions, and (iii) an average over a sphere in r-space. Case (iii) introduces the average over orientations of r into the structure-function equations. The energy dissipation rate ε appears in the exact trace equation without averaging, whereas in previous formulations ε appears after averaging and use of local isotropy. The trace mitigates the effect of anisotropy in the equations, thereby revealing that the trace of the third-order structure function is expected to be superior for quantifying asymptotic scaling laws. The orientation average has the same property.


1998 ◽  
Vol 10 (12) ◽  
pp. 3239-3241 ◽  
Author(s):  
R. A. Antonia ◽  
P. Orlandi ◽  
G. P. Romano

Sign in / Sign up

Export Citation Format

Share Document