Spatial instability of planar channel flow with fluid injection through porous walls

1998 ◽  
Vol 10 (10) ◽  
pp. 2558-2568 ◽  
Author(s):  
Grégoire Casalis ◽  
Gérard Avalon ◽  
Jean-Philippe Pineau
2000 ◽  
Vol 19 (1) ◽  
pp. 69-87 ◽  
Author(s):  
Jérôme Griffond ◽  
Grégoire Casalis ◽  
Jean-Philippe Pineau

2018 ◽  
Vol 842 ◽  
pp. 381-394 ◽  
Author(s):  
Marco E. Rosti ◽  
Luca Brandt ◽  
Alfredo Pinelli

The effect of the variations of the permeability tensor on the close-to-the-wall behaviour of a turbulent channel flow bounded by porous walls is explored using a set of direct numerical simulations. It is found that the total drag can be either reduced or increased by more than 20 % by adjusting the permeability directional properties. Drag reduction is achieved for the case of materials with permeability in the vertical direction lower than the one in the wall-parallel planes. This configuration limits the wall-normal velocity at the interface while promoting an increase of the tangential slip velocity leading to an almost ‘one-component’ turbulence where the low- and high-speed streak coherence is strongly enhanced. On the other hand, strong drag increase is found when high wall-normal and low wall-parallel permeabilities are prescribed. In this condition, the enhancement of the wall-normal fluctuations due to the reduced wall-blocking effect triggers the onset of structures which are strongly correlated in the spanwise direction, a phenomenon observed by other authors in flows over isotropic porous layers or over ribletted walls with large protrusion heights. The use of anisotropic porous walls for drag reduction is particularly attractive since equal gains can be achieved at different Reynolds numbers by rescaling the magnitude of the permeability only.


2007 ◽  
Vol 129 (8) ◽  
pp. 1048-1057 ◽  
Author(s):  
Clarisse Fournier ◽  
Marc Michard ◽  
Françoise Bataille

Steady state similarity solutions are computed to determine the temperature profiles in a laminar channel flow driven by uniform fluid injection at one or two porous walls. The temperature boundary conditions are non-symmetric. The numerical solution of the governing equations permit to analyze the influence of the governing parameters, the Reynolds and Péclet numbers. For both geometries, we deduce a scaling law for the boundary layer thickness as a function of the Péclet number. We also compare the numerical solutions with asymptotic expansions in the limit of large Péclet numbers. Finally, for non-symmetric injection, we derive from the computed temperature profile a relationship between the Nusselt and Péclet numbers.


Author(s):  
Luiz Paulo Borges Miranda ◽  
Daniel Dall Onder dos Santos ◽  
Flavia Zinani

2008 ◽  
Vol 604 ◽  
pp. 411-445 ◽  
Author(s):  
NILS TILTON ◽  
LUCA CORTELEZZI

We present the three-dimensional linear stability analysis of a pressure-driven, incompressible, fully developed, laminar flow in a channel delimited by rigid, homogeneous, isotropic, porous layers. We consider porous materials of small permeability in which the maximum fluid velocity is small compared to the mean velocity in the channel region and for which inertial effects may be neglected. We analyse the linear stability of symmetric laminar velocity profiles in channels with two identical porous walls as well as skewed laminar velocity profiles in channels with only one porous wall. We solve the fully coupled linear stability problem, arising from the adjacent channel and porous flows, using a spectral collocation technique. We validate our results by recovering the linear stability results of a flow in a channel with impermeable walls as the permeabilities of the porous layers tend to zero. We also verify that our results are consistent with the assumption of negligible inertial effects in the porous regions. We characterize the stability of pressure-driven flows by performing a parametric study in which we vary the permeability, porosity, and height of the porous layers as well as an interface coefficient, τ, associated with the momentum transfer process at the interfaces between the channel and porous regions. We find that very small amounts of wall permeability significantly affect the Orr–Sommerfeld spectrum and can dramatically decrease the stability of the channel flow. Within our assumptions, in channels with two porous walls, permeability destabilizes up to two Orr–Sommerfeld wall modes and introduces two new damped wall modes on the left branch of the spectrum. In channels with only one porous wall, permeability destabilizes up to one wall mode and introduces one new damped wall mode on the left branch of the spectrum. In both cases, permeability also introduces a new class of damped modes associated with the porous regions. The size of the unstable region delimited by the neutral curve grows substantially, and the critical Reynolds number can decrease to only 10% of the corresponding value for a channel flow with impermeable walls. We conclude our study by considering two real materials: foametal and aloxite. We fit the porosity and interface coefficient τ to published data so that the porous materials we model behave like foametal and aloxite, and we compare our results with previously published numerical and experimental results.


2010 ◽  
Author(s):  
Magali Dupuy ◽  
Emmanuel Radenac ◽  
Yves Fabignon ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document