Two-dimensional stagnation flow around a vertical plate above a plane wall

2000 ◽  
Vol 12 (3) ◽  
pp. 511-517 ◽  
Author(s):  
Jae-Tack Jeong
2013 ◽  
Vol 135 (7) ◽  
Author(s):  
C. Y. Wang ◽  
Chiu-On Ng

Two problems of stagnation flow on a uniformly heated surface with slip and temperature jump are solved in this paper with an exact similarity method. In the first problem, an axially symmetric stagnation flow impinging on a uniformly heated vertical flat surface is considered, and in the second problem, an inclined, two-dimensional stagnation flow impinging on the vertical surface is examined. It is shown that the surface slip can have a significant effect on the flow and the heat transfer in the two problems.


1973 ◽  
Vol 95 (3) ◽  
pp. 289-294 ◽  
Author(s):  
N. E. Hardwick ◽  
E. K. Levy

The steady, laminar, two-dimensional wake above a thin vertical isothermal heated plate cooled by free convection was investigated theoretically and experimentally. The system of partial differential equations governing the fluid motion and heat transfer in the vicinity of the plate and in the near wake region was formulated and solved using finite difference techniques. Using air, the temperature and velocity profiles in the wake region were measured experimentally using a laser holographic interferometer and a constant temperature hot wire anemometer.


1973 ◽  
Vol 61 (1) ◽  
pp. 159-172 ◽  
Author(s):  
H. Buggisch

The steady two-dimensional problem of reflexion of an oblique partly dispersed plane shock wave from a plane wall is studied analytically. Viscosity, diffusion and heat conduction are neglected. The thermodynamic state of the gas is assumed to be determined by the instantaneous values of the specific entropy s, pressure p and a finite number of internal state variables. Results for the flow field behind the reflected shock are obtained by a perturbation method which is based on the assumption that the influence of relaxation is relatively weak.


1970 ◽  
Vol 44 (3) ◽  
pp. 461-479 ◽  
Author(s):  
J. Kestin ◽  
R. T. Wood

The paper examines the stability of the uniform flow which approaches a two-dimensional stagnation region formed when a cylinder or a two-dimensional blunt body of finite curvature is immersed in a crossflow. It is shown that such a flow is unstable with respect to three-dimensional disturbances. This conclusion is reached on the basis of a mathematical analysis of a simplified form of the disturbance equation for the stream-wise component of the vorticity vector. The ultimate, or stable, flow pattern is governed by a singular Sturm–Liouville problem whose solution possesses a single eigenvalue. The resulting flow is one in which a regularly distributed system of counter-rotating vortices is super-imposed on the basic, Hiemenz-like pattern of streamlines. The spacing of the vortices is a unique function of the characteristics of the flow, and a theoretical estimate for it agrees well with experimental results. The analysis is extended heuristically to include the effect of free-stream turbulence on the spacing.The problem is similar to the classical Görtler–Hämmerlin study of the stability of stagnation flow against an infinite flat plate, which revealed the existence of a spectrum of eigenvalues for the disturbance equation. The present analysis yields the same result when an infinite radius of curvature is assumed for the blunt body.


1975 ◽  
Vol 70 (3) ◽  
pp. 561-572 ◽  
Author(s):  
C. S. Vimala ◽  
G. Nath

The unsteady laminar compressible boundary-layer flow in the immediate vicinity of a two-dimensional stagnation point due to an incident stream whose velocity varies arbitrarily with time is considered. The governing partial differential equations, involving both time and the independent similarity variable, are transformed into new co-ordinates with finite ranges by means of a transformation which maps an infinite interval into a finite one. The resulting equations are solved by converting them into a matrix equation through the application of implicit finite-difference formulae. Computations have been carried out for two particular unsteady free-stream velocity distributions: (i) a constantly accelerating stream and (ii) a fluctuating stream. The results show that in the former case both the skin-friction and the heat-transfer parameter increase steadily with time after a certain instant, while in the latter they oscillate, thus responding to the fluctuations in the free-stream velocity.


Sign in / Sign up

Export Citation Format

Share Document