Stagnation Flow on a Heated Vertical Plate With Surface Slip

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
C. Y. Wang ◽  
Chiu-On Ng

Two problems of stagnation flow on a uniformly heated surface with slip and temperature jump are solved in this paper with an exact similarity method. In the first problem, an axially symmetric stagnation flow impinging on a uniformly heated vertical flat surface is considered, and in the second problem, an inclined, two-dimensional stagnation flow impinging on the vertical surface is examined. It is shown that the surface slip can have a significant effect on the flow and the heat transfer in the two problems.

1988 ◽  
Vol 31 (6) ◽  
pp. 39-41
Author(s):  
Frank Stratmann ◽  
Heinz Fissan ◽  
Thomas Peterson

A series of two-dimensional calculations are performed to determine particle fluxes to wafers in a stagnation flow configuration. Mechanisms that influenced particle deposition included convection, diffusion, sedimentation, and thermophoresis. Particle deposition patterns resulting from a uniform freestream concentration are compared with deposition patterns from a narrow particle beam.


1973 ◽  
Vol 95 (3) ◽  
pp. 289-294 ◽  
Author(s):  
N. E. Hardwick ◽  
E. K. Levy

The steady, laminar, two-dimensional wake above a thin vertical isothermal heated plate cooled by free convection was investigated theoretically and experimentally. The system of partial differential equations governing the fluid motion and heat transfer in the vicinity of the plate and in the near wake region was formulated and solved using finite difference techniques. Using air, the temperature and velocity profiles in the wake region were measured experimentally using a laser holographic interferometer and a constant temperature hot wire anemometer.


1996 ◽  
Vol 7 (3) ◽  
pp. 237-247 ◽  
Author(s):  
L. Prigozhin

We consider two-dimensional and axially symmetric critical-state problems in type-II superconductivity, and show that these problems are equivalent to evolutionary quasi-variational inequalities. In a special case, where the inequalities become variational, the existence and uniqueness of the solution are proved.


1969 ◽  
Vol 3 (2) ◽  
pp. 255-267 ◽  
Author(s):  
M. P. Srivastava ◽  
P. K. Bhat

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.


Author(s):  
Cemile Baydere ◽  
Merve Taşçı ◽  
Necmi Dege ◽  
Mustafa Arslan ◽  
Yusuf Atalay ◽  
...  

A novel chalcone, C20H20O, derived from benzylidenetetralone, was synthesized via Claissen–Schmidt condensation between tetralone and 2,4,6-trimethylbenzaldehyde. In the crystal, molecules are linked by C—H...O hydrogen bonds, producing R 2 2(20) and R 2 4(12) ring motifs. In addition, weak C—H...π and π-stacking interactions are observed. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H...H (66.0%), H...C/ C...H (22.3%), H...O/O...H (9.3%), and C...C (2.4%) interactions. Shape-index plots show π–π stacking interactions and the curvedness plots show flat surface patches characteristic of planar stacking.


2012 ◽  
Vol 20 (02) ◽  
pp. 1240007 ◽  
Author(s):  
MARIO ZAMPOLLI ◽  
AUBREY L. ESPANA ◽  
KEVIN L. WILLIAMS ◽  
STEVEN G. KARGL ◽  
ERIC I. THORSOS ◽  
...  

The scattering from roughly meter-sized targets, such as pipes, cylinders and unexploded ordnance shells in the 1–30 kHz frequency band is studied by numerical simulations and compared to experimental results. The numerical tool used to compute the frequency and aspect-dependent target strength is a hybrid model, consisting of a local finite-element model for the vicinity of the target, based on the decomposition of the three-dimensional scattering problem for axially symmetric objects into a series of independent two-dimensional problems, and a propagation model based on the wavenumber spectral integral representation of the Green's functions for layered media.


Sign in / Sign up

Export Citation Format

Share Document