scholarly journals Magnetic-Bottle and velocity-map imaging photoelectron spectroscopy of APS− (A=C14H10 or anthracene): Electron structure, spin-orbit coupling of APS•, and dipole-bound state of APS−

2018 ◽  
Vol 31 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Qin-qin Yuan ◽  
Zheng Yang ◽  
Ren-zhong Li ◽  
Wesley J. Transue ◽  
Zhi-peng Li ◽  
...  
2020 ◽  
Vol 135 (7) ◽  
Author(s):  
Lorenzo Rossi ◽  
Fabrizio Dolcini ◽  
Fausto Rossi

AbstractSemiconductor nanowires with strong Rashba spin-orbit coupling are currently on the spotlight of several research fields such as spintronics, topological materials and quantum computation. While most theoretical models assume an infinitely long nanowire, in actual experimental setups the nanowire has a finite length, is contacted to metallic electrodes and is partly covered by gates. By taking these effects into account through an inhomogeneous spin-orbit coupling profile, we show that in general two types of bound states arise in the nanowire, namely confinement bound states and interface bound states. The appearance of confinement bound states, related to the finite length of the nanowire, is favoured by a mismatch of the bulk band bottoms characterizing the lead and the nanowire, and occurs even in the absence of magnetic field. In contrast, an interface bound states may only appear if a magnetic field applied perpendicularly to the spin-orbit field direction overcomes a critical value, and is favoured by an alignment of the band bottoms of the two regions across the interface. We describe in details the emergence of these two types of bound states, pointing out their differences. Furthermore, we show that when a nanowire portion is covered by a gate the application of a magnetic field can change the nature of the electronic ground state from a confinement to an interface bound state, determining a redistribution of the electron charge.


2016 ◽  
Vol 114 (19) ◽  
pp. 2848-2856
Author(s):  
Katrin Dulitz ◽  
Elias Bommeli ◽  
Guido Grassi ◽  
Daniel Zindel ◽  
Frédéric Merkt

2021 ◽  
Vol 6 (2) ◽  
pp. 16
Author(s):  
Luca Dell’Anna ◽  
Stefano Grava

We review the study of the superfluid phase transition in a system of fermions whose interaction can be tuned continuously along the crossover from Bardeen–Cooper–Schrieffer (BCS) superconducting phase to a Bose–Einstein condensate (BEC), also in the presence of a spin–orbit coupling. Below a critical temperature the system is characterized by an order parameter. Generally a mean field approximation cannot reproduce the correct behavior of the critical temperature Tc over the whole crossover. We analyze the crucial role of quantum fluctuations beyond the mean-field approach useful to find Tc along the crossover in the presence of a spin–orbit coupling, within a path integral approach. A formal and detailed derivation for the set of equations useful to derive Tc is performed in the presence of Rashba, Dresselhaus and Zeeman couplings. In particular in the case of only Rashba coupling, for which the spin–orbit effects are more relevant, the two-body bound state exists for any value of the interaction, namely in the full crossover. As a result the effective masses of the emerging bosonic excitations are finite also in the BCS regime.


Sign in / Sign up

Export Citation Format

Share Document