Investigation of structural and optical properties of MnxMg1-xO(x=0.00, 0.03, 0.07) nanoparticles prepared by wet chemical technique

2020 ◽  
Author(s):  
Jarnail Singh ◽  
Sat Paul ◽  
Pankaj Bhardwaj ◽  
Ravi Kumar ◽  
Vikram Verma
2006 ◽  
Vol 972 ◽  
Author(s):  
Atmane Ait-Salah ◽  
Chintalapalle V Ramana ◽  
François Gendron ◽  
Jean-François Morhange ◽  
Alain Mauger ◽  
...  

AbstractWe present the synthesis and characterization of a novel lithium iron polyphosphate LiFe2P3O10 prepared by wet-chemical technique from nitrate precursors. The crystal system is shown to be monoclinic (P21/m space group) and the refined cell parameters are a=4.596 Å, b=8.566 Å, c=9.051 Å and β=97.46°. LiFe2P3O10 has a weak antiferromagnetic ordering below the Néel temperature TN=19 K. Electrochemical measurements carried out at 25 °C in lithium cell with LiPF6-EC-DEC electrolyte show a capacity 70 mAh/g in the voltage range 2.7-3.9 V.


2021 ◽  
Vol 878 ◽  
pp. 73-80
Author(s):  
Khansaa Al-Essa ◽  
A V Radha ◽  
Alexandra Navrotsky

The nanoscale, cubic silver (I) oxide (Ag2O.nH2O) with different particles sizes and surface areas were synthesized by a wet chemical technique. The prepared crystallite size ranges were from (33.3±0.3 to 39.4±0.4 nm). Interface areas were estimated by comparing the surface areas measured by N2 adsorption to the crystallite sizes refined from X-ray diffraction data. The interface enthalpy of Ag2O.nH2O nanocrystal was measured using isothermal acid solution calorimetry in 25%HNO3 at 26°C. The interface enthalpy was verified by utilizing thermodynamic cycle. The enthalpies of drop solution (ΔHds) for Ag2O.nH2O are exothermic and range from (-62.228±0.197) to (-64.025±0.434 kJ/mol), while its interface enthalpy is (0.842±0.508 J/m2). This work provides the first calorimetric measurement of the interface enthalpy of nanocrystalline silver (I) oxide (Ag2O.nH2O).


2020 ◽  
Vol 46 (17) ◽  
pp. 26675-26681 ◽  
Author(s):  
Hira ◽  
Aysha Daud ◽  
Sonia Zulfiqar ◽  
Philips O. Agboola ◽  
Imran Shakir ◽  
...  

1971 ◽  
Vol 25 (6) ◽  
pp. 668-671 ◽  
Author(s):  
Gerald S. Golden

Iron analyses performed on used gas turbine lubricating oil samples by several variations of rotating disk–spark emission spectrography, atomic absorptiometry, and x-ray fluorescence spectrometry are compared with a quantitative wet chemical technique. The results indicate that emission spectrography with a cobalt internal standard, atomic absorptiometry with a nitrous oxide–acetylene flame, and x-ray fluorescence, both dispersive and nondispersive, are the most reliable instrumental methods. The iron contained in the samples exists primarily as particulates 1 µ or less in diameter.


Sign in / Sign up

Export Citation Format

Share Document