scholarly journals On the continuous dependence of the stationary distribution of a piecewise deterministic Markov process on its jump intensity

2020 ◽  
Author(s):  
Dawid Czapla ◽  
Sander C. Hille ◽  
Katarzyna Horbacz ◽  
Hanna Wojewódka-Ściążko
2008 ◽  
Vol 40 (03) ◽  
pp. 815-834 ◽  
Author(s):  
K. Borovkov ◽  
G. Last

We consider a piecewise-deterministic Markov process (Xt) governed by a jump intensity function, a rate function that determines the behaviour between jumps, and a stochastic kernel describing the conditional distribution of jump sizes. The paper deals with the point processof upcrossings of some levelbby (Xt). We prove a version of Rice's formula relating the stationary density of (Xt) to level crossing intensities and show that, for a wide class of processes (Xt), asb→ ∞, the scaled point processwhere ν+(b) denotes the intensity of upcrossings ofb, converges weakly to a geometrically compound Poisson process.


2020 ◽  
Vol 17 (2) ◽  
pp. 1059-1073
Author(s):  
Dawid Czapla ◽  
◽  
Sander C. Hille ◽  
Katarzyna Horbacz ◽  
Hanna Wojewódka-Ściążko ◽  
...  

2008 ◽  
Vol 40 (3) ◽  
pp. 815-834 ◽  
Author(s):  
K. Borovkov ◽  
G. Last

We consider a piecewise-deterministic Markov process (Xt) governed by a jump intensity function, a rate function that determines the behaviour between jumps, and a stochastic kernel describing the conditional distribution of jump sizes. The paper deals with the point process of upcrossings of some level b by (Xt). We prove a version of Rice's formula relating the stationary density of (Xt) to level crossing intensities and show that, for a wide class of processes (Xt), as b → ∞, the scaled point process where ν+(b) denotes the intensity of upcrossings of b, converges weakly to a geometrically compound Poisson process.


2005 ◽  
Vol 19 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Onno Boxma ◽  
Haya Kaspi ◽  
Offer Kella ◽  
David Perry

We consider a storage model that can be on or off. When on, the content increases at some state-dependent rate and the system can switch to the off state at a state-dependent rate as well. When off, the content decreases at some state-dependent rate (unless it is at zero) and the system can switch to the on position at a state-dependent rate. This process is a special case of a piecewise deterministic Markov process. We identify the stationary distribution and conditions for its existence and uniqueness.


1975 ◽  
Vol 12 (03) ◽  
pp. 574-580 ◽  
Author(s):  
Warren W. Esty

Consider the following path, Zn (w), of a Galton-Watson process in reverse. The probabilities that ZN–n = j given ZN = i converge, as N → ∞ to a probability function of a Markov process, Xn , which I call the ‘reverse process’. If the initial state is 0, I require that the transition probabilities be the limits given not only ZN = 0 but also ZN –1 > 0. This corresponds to looking at a Galton-Watson process just prior to extinction. This paper gives the n-step transition probabilities for the reverse process, a stationary distribution if m ≠ 1, and a limit law for Xn/n if m = 1 and σ 2 < ∞. Two related results about Zcn, 0 < c < 1, for Galton-Watson processes conclude the paper.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 631
Author(s):  
Marc Harper ◽  
Dashiell Fryer

We propose the entropy of random Markov trajectories originating and terminating at the same state as a measure of the stability of a state of a Markov process. These entropies can be computed in terms of the entropy rates and stationary distributions of Markov processes. We apply this definition of stability to local maxima and minima of the stationary distribution of the Moran process with mutation and show that variations in population size, mutation rate, and strength of selection all affect the stability of the stationary extrema.


1975 ◽  
Vol 12 (3) ◽  
pp. 574-580 ◽  
Author(s):  
Warren W. Esty

Consider the following path, Zn(w), of a Galton-Watson process in reverse. The probabilities that ZN–n = j given ZN = i converge, as N → ∞ to a probability function of a Markov process, Xn, which I call the ‘reverse process’. If the initial state is 0, I require that the transition probabilities be the limits given not only ZN = 0 but also ZN–1 > 0. This corresponds to looking at a Galton-Watson process just prior to extinction. This paper gives the n-step transition probabilities for the reverse process, a stationary distribution if m ≠ 1, and a limit law for Xn/n if m = 1 and σ2 < ∞. Two related results about Zcn, 0 < c < 1, for Galton-Watson processes conclude the paper.


2004 ◽  
Vol 41 (3) ◽  
pp. 746-757 ◽  
Author(s):  
Guy Latouche ◽  
Tetsuya Takine

We consider a fluid queue controlled by a semi-Markov process and we apply the Markov-renewal approach developed earlier in the context of quasi-birth-and-death processes and of Markovian fluid queues. We analyze two subfamilies of semi-Markov processes. In the first family, we assume that the intervals during which the input rate is negative have an exponential distribution. In the second family, we take the complementary case and assume that the intervals during which the input rate is positive have an exponential distribution. We thoroughly characterize the structure of the stationary distribution in both cases.


Sign in / Sign up

Export Citation Format

Share Document