Double symmetry reductions of a 3-dimensional solute transport model with space dependent water velocity

2020 ◽  
Author(s):  
Basetsana P. Ntsime
2020 ◽  
Vol 18 (1) ◽  
pp. 232-238
Author(s):  
Zhihong Zhang ◽  
Gailei Tian ◽  
Lin Han

AbstractSolute transport through the clay liner is a significant process in many waste landfills or unmanaged landfills. At present, researchers mainly focus on the test study about semi-membrane property of clay material, however, the influence of chemical osmosis caused by membrane effect on solute transport and fluid velocity is insufficient. In this investigation, based on the classical advection-diffusion equation, a one-dimensional solute transport model for low-permeable clay material has been proposed, in which the coupled fluid velocity related with hydraulic gradient and concentration gradient is introduced, and the semi-membrane effect is embodied in the diffusion mechanism. The influence of chemical osmosis on fluid velocity and solute transport has been analyzed using COMSOL Multiphysics software. The simulated results show that chemical osmosis has a significant retarded action on fluid velocity and pollutant transport. The proposed model can effectively reveal the change in process of coupled fluid velocity under dual gradient and solute transport, which can provide a theoretical guidance for similar fluid movement in engineering.


1995 ◽  
Vol 412 ◽  
Author(s):  
A. V. Wolfsberg ◽  
B. A. Robinson ◽  
J. T. Fabryka-Martin

AbstractCharacterization and performance assessment (PA) studies for the potential high-level nuclear waste repository at Yucca Mountain require an understanding of migration mechanisms and pathways of radioactive solutes. Measurements of 36C1 in samples extracted from boreholes at the site are being used in conjunction with recent infiltration estimates to calibrate a site-scale flow and solute transport model. This exercise using the flow and solute transport model, FEHM, involves testing different model formulations and two different hypotheses to explain the occurrence of elevated 36Cl in the Calico Hills unit (CHn) which indicates younger water than in the overlying Topopah Spring unit (TSw). One hypothesis suggests fast vertical transport from the surface via fractures in the TSw to the CHn. An alternative hypothesis is that the elevated 36C1 concentrations reflect rapid horizontal flow in the CHn or at the interface between the CHn and the TSw with the source being vertical percolation under spatially isolated regions of high infiltration or at outcrops of those units. Arguments in favor of and against the hypotheses are described in conjunction with the site-scale transport studies.


2014 ◽  
Vol 21 (4) ◽  
pp. 643-671 ◽  
Author(s):  
H. Baran ◽  
I.S. Krasil'shchik ◽  
O.I. Morozov ◽  
P. Vojčák

1997 ◽  
Vol 1 (4) ◽  
pp. 873-893 ◽  
Author(s):  
D. Jacques ◽  
J. Vanderborght ◽  
D. Mallants ◽  
D.-J. Kim ◽  
H. Vereecken ◽  
...  

Abstract. In this paper the relation between local- and field-scale solute transport parameters in an unsaturated soil profile is investigated. At two experimental sites, local-scale steady-state solute transport was measured in-situ using 120 horizontally installed TDR probes at 5 depths. Local-scale solute transport parameters determined from BTCs were used to predict field-scale solute transport using stochastic stream tube models (STM). Local-scale solute transport was described by two transport models: (1) the convection-dispersion transport model (CDE), and (2) the stochastic convective lognormat transfer model (CLT). The parameters of the CDE-model were found to be lognormally distributed, whereas the parameters of the CLT model were normally distributed. Local-scale solute transport heterogeneity within the measurement volume of a TDR-probe was an important factor causing field-scale solute dispersion. The study of the horizontal scale-dependency revealed that the variability in the solute transport parameters contributes more to the field-scale dispersion at deeper depths than at depths near the surface. Three STMs were used to upscale the local transport parameters: (i) the stochastic piston flow STM-I assuming local piston flow transport, (ii) the convective-dispersive STM-II assuming local CDE transport, and (iii) the stochastic convective lognormal STM-III assuming local CLT. The STM-I considerably underpredicted the field-scale solute dispersion indicating that local-scale dispersion processes, which are captured within the measurement volume of the TDR-probe, are important to predict field-scale solute transport. STM-II and STM-III both described the field-scale breakthrough curves (BTC) accurately if depth dependent parameters were used. In addition, a reasonable description of the horizontal variance of the local BTCs was found. STM-III was (more) superior to STM-II if only one set of parameters from one depth is used to predict the field-scale solute BTCs at several depths. This indicates that the local-scale solute transport process, as measured with TDR in this study, is in agreement with the CLT-hypothesis.


Sign in / Sign up

Export Citation Format

Share Document