chemical osmosis
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2020 ◽  
Vol 18 (1) ◽  
pp. 232-238
Author(s):  
Zhihong Zhang ◽  
Gailei Tian ◽  
Lin Han

AbstractSolute transport through the clay liner is a significant process in many waste landfills or unmanaged landfills. At present, researchers mainly focus on the test study about semi-membrane property of clay material, however, the influence of chemical osmosis caused by membrane effect on solute transport and fluid velocity is insufficient. In this investigation, based on the classical advection-diffusion equation, a one-dimensional solute transport model for low-permeable clay material has been proposed, in which the coupled fluid velocity related with hydraulic gradient and concentration gradient is introduced, and the semi-membrane effect is embodied in the diffusion mechanism. The influence of chemical osmosis on fluid velocity and solute transport has been analyzed using COMSOL Multiphysics software. The simulated results show that chemical osmosis has a significant retarded action on fluid velocity and pollutant transport. The proposed model can effectively reveal the change in process of coupled fluid velocity under dual gradient and solute transport, which can provide a theoretical guidance for similar fluid movement in engineering.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 961
Author(s):  
Fei Wang ◽  
Qiaoyun Chen ◽  
Yingqi Ruan

Post-fracturing well shut-in is traditionally due to the elastic closure of hydraulic fractures and proppant compaction. However, for shale gas wells, the extension of shut-in time may improve the post-fracturing gas production due to formation energy supplements by fracturing-fluid imbibition. This paper presents a methodology using numerical simulation to simulate the hydrodynamic equilibrium phenomenon of a hydraulically fractured shale gas reservoir, including matrix imbibition and fracture network crossflow, and further optimize the post-fracturing shut-in time. A mathematical model, which can describe the fracturing-fluid hydrodynamic transport during the shut-in process, and consider the distinguishing imbibition characteristics of a hydraulically fractured shale reservoir, i.e., hydraulic pressure, capillarity and chemical osmosis, is developed. The key concept, i.e., hydrodynamic equilibrium time, for optimizing the post-fracturing shut-in schedule, is proposed. The fracturing-fluid crossflow and imbibition profiles are simulated, which indicate the water discharging and sucking equilibrium process in the coupled fracture–matrix system. Based on the simulation, the hydrodynamic equilibrium time is calculated. The influences of hydraulic pressure difference, capillarity and chemical osmosis on imbibition volume, and hydrodynamic equilibrium time are also investigated. Finally, the optimal shut-in time is determined if the gas production rate is pursued and the fracturing-fluid loss is allowable. The proposed simulation method for determining the optimal shut-in time is meaningful to the post-fracturing shut-in schedule.


2018 ◽  
Vol 55 (11) ◽  
pp. 1611-1631 ◽  
Author(s):  
Andrea Dominijanni ◽  
Nicolò Guarena ◽  
Mario Manassero

The relevance of the semi-permeable properties of bentonites, which affect both their transport processes and mechanical behaviour, has been assessed through the experimental determination of three parameters: the reflection coefficient, ω; the osmotic effective diffusion coefficient, [Formula: see text]; and the swell coefficient, ϖ. Two multi-stage tests were conducted on a natural sodium bentonite, while varying both the specimen void ratio, e, and the solute concentration, cs, of the equilibrium sodium chloride (NaCl) solutions. The measured phenomenological parameters were interpreted through a mechanistic model, in which the electric charge of clay particles is taken into account via a single material parameter, [Formula: see text], referred to as the “solid charge coefficient”. A constant value of [Formula: see text] = 110 mmol/L was found to provide an accurate interpretation of the experimental data, at least within the investigated range of bentonite void ratios (3.33 ≤ e ≤ 4.18) and NaCl concentrations of the external bulk solutions (5 ≤ cs ≤ 90 mmol/L). The results support the hypothesis that both chemical osmosis and swelling pressure are macroscopic manifestations of the same interactions, which occur at the microscopic scale between the clay particles and the ions contained in the pore solution, and that both of them can be modelled through a single theoretical framework.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Long Chang ◽  
Hongkui Ge ◽  
Yinghao Shen ◽  
Zehui Huang ◽  
Qian Zhang

The microscopic interaction mechanism between working fluids and shale reservoirs is the key basic issue for the efficient development of shale gas. The initial water saturation of clay-rich shale is low, and the water absorption through strong chemical osmosis is an important factor for the wellbore instability of the drilling fluid filtration loss and the low flowback rate of hydraulic fracturing. Membrane efficiency is a key parameter in evaluating the mechanical-chemical coupling of shale-fluid interaction. Because microcracks develop in reservoir shale, pressure transfer experiments are no longer capable of obtaining membrane efficiency value. In this paper, the characteristics of shale water saturation are considered. The model calculating membrane efficiency is obtained, and the shale membrane efficiency of the reservoir studied, based on the triple-layer model of clay mineral-water interface electrochemistry. Membrane efficiency of unsaturated shale depends on the excess charge density of the surface of the solid in different water saturations. The analysis of factors influencing shale membrane efficiency in unsaturated reservoirs shows that the shale membrane efficiency decreases with the increase of water saturation under unsaturated conditions. The partition coefficient of counterion in the Stern layer, cation exchange capacity, and solute concentration in pore fluid will affect the membrane efficiency of unsaturated shale. The membrane efficiency of the reservoir section shale in Fuling area is calculated and analyzed, and the water-absorbing capacity by chemical osmosis of the reservoir interval shale is evaluated based on the membrane efficiency model of unsaturated shale.


Sign in / Sign up

Export Citation Format

Share Document