On the application of recursive bisection and nested dissection reorderings for solving fractional diffusion problems using HSS compression

2020 ◽  
Author(s):  
D. Slavchev ◽  
S. Margenov ◽  
I. G. Georgiev
2020 ◽  
Vol 28 (3) ◽  
pp. 147-160
Author(s):  
Andrea Bonito ◽  
Diane Guignard ◽  
Ashley R. Zhang

AbstractWe consider the numerical approximation of the spectral fractional diffusion problem based on the so called Balakrishnan representation. The latter consists of an improper integral approximated via quadratures. At each quadrature point, a reaction–diffusion problem must be approximated and is the method bottle neck. In this work, we propose to reduce the computational cost using a reduced basis strategy allowing for a fast evaluation of the reaction–diffusion problems. The reduced basis does not depend on the fractional power s for 0 < smin ⩽ s ⩽ smax < 1. It is built offline once for all and used online irrespectively of the fractional power. We analyze the reduced basis strategy and show its exponential convergence. The analytical results are illustrated with insightful numerical experiments.


Author(s):  
Michele Benzi ◽  
Igor Simunec

AbstractIn this paper we propose a method to compute the solution to the fractional diffusion equation on directed networks, which can be expressed in terms of the graph Laplacian L as a product $$f(L^T) \varvec{b}$$ f ( L T ) b , where f is a non-analytic function involving fractional powers and $$\varvec{b}$$ b is a given vector. The graph Laplacian is a singular matrix, causing Krylov methods for $$f(L^T) \varvec{b}$$ f ( L T ) b to converge more slowly. In order to overcome this difficulty and achieve faster convergence, we use rational Krylov methods applied to a desingularized version of the graph Laplacian, obtained with either a rank-one shift or a projection on a subspace.


2018 ◽  
Vol 18 (1) ◽  
pp. 129-146 ◽  
Author(s):  
Yan Yang ◽  
Yubin Yan ◽  
Neville J. Ford

AbstractWe consider error estimates for some time stepping methods for solving fractional diffusion problems with nonsmooth data in both homogeneous and inhomogeneous cases. McLean and Mustapha [18] established an {O(k)} convergence rate for the piecewise constant discontinuous Galerkin method with nonsmooth initial data for the homogeneous problem when the linear operator A is assumed to be self-adjoint, positive semidefinite and densely defined in a suitable Hilbert space, where k denotes the time step size. In this paper, we approximate the Riemann–Liouville fractional derivative by Diethelm’s method (or L1 scheme) and obtain the same time discretisation scheme as in McLean and Mustapha [18]. We first prove that this scheme has also convergence rate {O(k)} with nonsmooth initial data for the homogeneous problem when A is a closed, densely defined linear operator satisfying some certain resolvent estimates. We then introduce a new time discretisation scheme for the homogeneous problem based on the convolution quadrature and prove that the convergence rate of this new scheme is {O(k^{1+\alpha})}, {0<\alpha<1}, with the nonsmooth initial data. Using this new time discretisation scheme for the homogeneous problem, we define a time stepping method for the inhomogeneous problem and prove that the convergence rate of this method is {O(k^{1+\alpha})}, {0<\alpha<1}, with the nonsmooth data. Numerical examples are given to show that the numerical results are consistent with the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document