ionic model
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 16)

H-INDEX

31
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3090
Author(s):  
Pavel Konovalov ◽  
Daria Mangileva ◽  
Arsenii Dokuchaev ◽  
Olga Solovyova ◽  
Alexander V. Panfilov

Waves of electrical excitation rotating around an obstacle is one of the important mechanisms of dangerous cardiac arrhythmias occurring in the heart damaged by a post-infarction scar. Such a scar is also surrounded by the region of heterogeneity called a gray zone. In this paper, we perform the first comprehensive numerical study of various regimes of wave rotation around an obstacle surrounded by a gray zone. We use the TP06 cellular ionic model for human cardiomyocytes and study how the period and the pattern of wave rotation depend on the radius of a circular obstacle and the width of a circular gray zone. Our main conclusions are the following. The wave rotation regimes can be subdivided into three main classes: (1) functional rotation, (2) scar rotation and the newly found (3) gray zone rotation regimes. In the scar rotation regime, the wave rotates around the obstacle, while in the gray zone regime, the wave rotates around the gray zone. As a result, the period of rotation is determined by the perimeter of the scar, or gray zone perimeter correspondingly. The transition from the scar to the gray rotation regimes can be determined from the minimal period principle, formulated in this paper. We have also observed additional regimes associated with two types of dynamical instabilities which may affect or not affect the period of rotation. The results of this study can help to identify the factors determining the period of arrhythmias in post-infarction patients.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2911
Author(s):  
Daria Mangileva ◽  
Pavel Konovalov ◽  
Arsenii Dokuchaev ◽  
Olga Solovyova ◽  
Alexander V. Panfilov

Rotating nonlinear waves of excitation in the heart cause dangerous cardiac arrhythmias. Frequently, ventricular arrhythmias occur as a result of myocardial infarction and are associated with rotation of the waves around a post-infarction scar. In this paper, we perform a detailed in silico analysis of scroll waves in an anatomical model of the human ventricles with a generic model of the infarction scar surrounded by the gray zone with modified properties of the myocardial tissue. Our model includes a realistic description of the heart shape, anisotropy of cardiac tissue and a detailed description of the electrical activity in human ventricular cells by a TP06 ionic model. We vary the size of the scar and gray zone and analyze the dependence of the rotation period on the injury dimensions. Two main regimes of wave scrolling are observed: the scar rotation, when the wave rotates around the scar, and the gray zone rotation, when the wave rotates around the boundary of the gray zone and normal tissue. The transition from the gray zone to the scar rotation occurs for the width of gray zone above 10–20 mm, depending on the perimeter of the scar. We compare our results with simulations in 2D and show that 3D anisotropy reduces the period of rotation. We finally use a model with a realistic shape of the scar and show that our approach predicts correctly the period of the arrhythmia.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2604
Author(s):  
Roman Rokeakh ◽  
Tatiana Nesterova ◽  
Konstantin Ushenin ◽  
Ekaterina Polyakova ◽  
Dmitry Sonin ◽  
...  

Species-specific computer models of the heart are a novel powerful tool in studies of life-threatening cardiac arrhythmias. Here, we develop such a model aimed at studying infarction injury in a rat heart, the most common experimental system to investigate the effects of myocardial damage. We updated the Gattoni2016 cellular ionic model by fitting its parameters to experimental data using a population modeling approach. Using four selected cellular models, we studied 2D spiral wave dynamics and found that they include meandering and break-up. Then, using an anatomically realistic ventricular geometry and fiber orientation in the rat heart, we built a model with a post-infarction scar to study the electrophysiological effects of myocardial damage. A post-infarction scar was simulated as an inexcitable obstacle surrounded by a border zone with modified cardiomyocyte properties. For cellular models, we studied the rotation of scroll waves and found that, depending on the model, we can observe different types of dynamics: anchoring, self-termination or stable rotation of the scroll wave. The observed arrhythmia characteristics coincide with those measured in the experiment. The developed model can be used to study arrhythmia in rat hearts with myocardial damage from ischemia reperfusion and to examine the possible arrhythmogenic effects of various experimental interventions.


2021 ◽  
Author(s):  
Pavel Konovalov ◽  
Daria Mangileva ◽  
Arsenii Dokuchaev ◽  
Olga Solovyova ◽  
Alexander Panfilov

Waves of electrical excitation rotating around an obstacle is one of the important mechanisms of dangerous cardiac arrhythmias occurring in the heart damaged by post-infarction scar. Such a scar also has a border zone around it, which has electrophysiological properties different from the rest of normal myocardial tissue. Spatial patterns of wave rotation in the presence of such tissue heterogeneity are poorly studied. In this paper we perform a comprehensive numerical study of various regimes of rotation of a wave in a plane layer of the ventricular tissue around an obstacle surrounded by a gray zone. We use a TP06 cellular ionic model which reproduces the electrophysiological properties cardiomyocytes in the left ventricle of human heart. We vary the extent of obstacle and gray zone and study the pattern of wave rotation and its period. We observed different regimes of wave rotation that can be subdivided into several classes: (1) functional rotation and (2) scar rotation regimes, which were identified in the previous studies, and new (3) gray zone rotation regime: where the wave instead of rotation around the obstacle, rotates around the gray zone (an area of tissue heterogeneity) itself. For each class, the period of rotation is determined by different factors, which we discuss and quantify. We also found that due to regional pathological remodeling of myocardial tissue, we can obtain additional regimes associated with dynamical instabilities of two types which may affect or not affect the period of rotation.


2021 ◽  
Vol 533 ◽  
pp. 112934
Author(s):  
Yumeng Zhang ◽  
Yajing You ◽  
Qingwei Gao ◽  
Cheng Zhang ◽  
Shanshan Wang ◽  
...  

2021 ◽  
pp. 2150018
Author(s):  
Sameen F. Mohammed ◽  
Abdulhadi Mirdan Ghaleb ◽  
Esam S. Ali

This work investigates the electronic momentum density (EMD) distribution in nanosize zirconia (ZrO2) using the technique of Compton scattering. The ZrO2 nanoparticles (11.2[Formula: see text]nm) are synthesized of mechanical milling and characterized by SEM, XRD and TEM probes. The Compton profile [Formula: see text] of nanoZrO2 is measured by Compton spectrometer 59.54[Formula: see text]KeV Gamma rays (Americium-241) source. The study finds out that EMD in nanoZrO2 is narrower comparing in case bulk ZrO2. This study adopts the ionic-model-based free atom [Formula: see text] calculation for many configurations (Zr)[Formula: see text](O[Formula: see text])2 ([Formula: see text]) to measure the charge transfer (CT) on the compound formation. According to this study’s findings, CT values in these materials are ranged from 1.5 to 1.0 electrons from Zr to O atom.


Author(s):  
Bartholomew Andrews ◽  
Gareth Conduit

The quasi-harmonic model proposes that a crystal can be modelled as atoms connected by springs. We demonstrate how this viewpoint can be misleading: a simple application of Gauss’s law shows that the ion–ion potential for a cubic Coulomb system can have no diagonal harmonic contribution and so cannot necessarily be modelled by springs. We investigate the repercussions of this observation by examining three illustrative regimes: the bare ionic, density tight-binding and density nearly-free electron models. For the bare ionic model, we demonstrate the zero elements in the force constants matrix and explain this phenomenon as a natural consequence of Poisson’s law. In the density tight-binding model, we confirm that the inclusion of localized electrons stabilizes all major crystal structures at harmonic order and we construct a phase diagram of preferred structures with respect to core and valence electron radii. In the density nearly-free electron model, we verify that the inclusion of delocalized electrons, in the form of a background jellium, is enough to counterbalance the diagonal force constants matrix from the ion–ion potential in all cases and we show that a first-order perturbation to the jellium does not have a destabilizing effect. We discuss our results in connection to Wigner crystals in condensed matter, Yukawa crystals in plasma physics, as well as the elemental solids.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 310 ◽  
Author(s):  
Sami M. Ibn Shamsah ◽  
Taoreed O. Owolabi

The thermal response of a magnetic solid to an applied magnetic field constitutes magnetocaloric effect. The maximum magnetic entropy change (MMEC) is one of the quantitative parameters characterizing this effect, while the magnetic solids exhibiting magnetocaloric effect have great potential in magnetic refrigeration technology as they offer a green solution to the known pollutant-based refrigerants. In order to determine the MMEC of doped manganite and the influence of dopants on the magnetocaloric effect of doped manganite compounds, this work developed a grid search (GS)-based extreme learning machine (ELM) and hybrid gravitational search algorithm (GSA)-based support vector regression (SVR) for estimating the MMEC of doped manganite compounds using ionic radii and crystal lattice parameters as descriptors. Based on the root-mean-square error (RMSE), the developed GSA-SVR-radii model performs better than the existing genetic algorithm (GA)-SVR-ionic model in the literature by 27.09%, while the developed GSA-SVR-crystal model performs better than the existing GA-SVR-lattice model in the literature by 38.34%. Similarly, the developed ELM-GS-crystal model performs better than the existing GA-SVR-ionic model with a performance enhancement of 14.39% and 20.65% using the mean absolute error (MAE) and RMSE, respectively, as performance measuring parameters. The developed models also perform better than the existing models using correlation coefficient as the performance measuring parameter when validated with experimentally measured MMEC. The superior performance of the present models coupled with easy accessibility of the descriptors definitely will facilitate the synthesis of doped manganite compounds with a high magnetocaloric effect without experimental stress.


2020 ◽  
Vol 318 (3) ◽  
pp. H534-H546 ◽  
Author(s):  
Richard A. Gray ◽  
Michael R. Franz

Computational modeling based on experimental data remains an important component in cardiac electrophysiological research, especially because clinical data such as human action potential (AP) dynamics are scarce or limited by practical or ethical concerns. Such modeling has been used to develop and test a variety of mechanistic hypotheses, with the majority of these studies involving the rate dependence of AP duration (APD) including APD restitution and conduction velocity (CV). However, there is very little information regarding the complex dynamics at the boundary of repolarization (or refractoriness) and reexcitability. Here, we developed a “minimal” ionic model of the human AP, based on in vivo human monophasic AP (MAP) recordings obtained during clinical programmed electrical stimulation (PES) to address the progressive decrease in AP take-off potential (TOP) and associated CV slowing seen during three tightly spaced extrastimuli. Recent voltage-clamp data demonstrating the effect of intracellular calcium on sodium current availability were incorporated and were required to reproduce large (>15 mV) elevations in take-off potential and progressive encroachment. Introducing clinically observed APD gradients into the model enabled us to replicate the dynamic response to PES in patients leading to conduction block and reentry formation for the positive, but not the negative, APD gradient. Finally, we modeled the dynamics of reentry and show that spiral waves follow a meandering trajectory with a period of ~180 ms. We conclude that our model reproduces a variety of electrophysiological behavior including the response to sequential premature stimuli and provides a basis for studies of the initiation of reentry in human ventricular tissue. NEW & NOTEWORTHY This work presents a new model of the action potential of the human which reproduces the complex dynamics during premature stimulation in patients.


CrystEngComm ◽  
2020 ◽  
Vol 22 (43) ◽  
pp. 7399-7406
Author(s):  
James A. Odendal ◽  
Jocelyn C. Bruce ◽  
Klaus R. Koch ◽  
Delia A. Haynes

A combined CSD and experimental study shows that the ring stacking and laddering principle, an ionic model, gives insight into the crystal structures of secondary ammonium carboxylate salts.


Sign in / Sign up

Export Citation Format

Share Document