scholarly journals Internal resistive heating of non-metallic samples to 3000 K and >60 GPa in the diamond anvil cell

2021 ◽  
Vol 92 (6) ◽  
pp. 063904
Author(s):  
Benedict J. Heinen ◽  
James W. E. Drewitt ◽  
Michael J. Walter ◽  
Charles Clapham ◽  
Fei Qin ◽  
...  
2008 ◽  
Vol 79 (8) ◽  
pp. 085103 ◽  
Author(s):  
Sebastien Pasternak ◽  
Giuliana Aquilanti ◽  
Sakura Pascarelli ◽  
Roberta Poloni ◽  
Bernard Canny ◽  
...  

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
A. S. J. Méndez ◽  
F. Trybel ◽  
R. J. Husband ◽  
G. Steinle-Neumann ◽  
H.-P. Liermann ◽  
...  

1989 ◽  
Vol 1 (5-6) ◽  
pp. 337-340 ◽  
Author(s):  
M. I. Eremets ◽  
V. V. Struzhkin ◽  
I. A. Trojan

2019 ◽  
Vol 116 (39) ◽  
pp. 19324-19329 ◽  
Author(s):  
Rajkrishna Dutta ◽  
Eran Greenberg ◽  
Vitali B. Prakapenka ◽  
Thomas S. Duffy

Neighborite, NaMgF3, is used as a model system for understanding phase transitions in ABX3 systems (e.g., MgSiO3) at high pressures. Here we report diamond anvil cell experiments that identify the following phases in NaMgF3 with compression to 162 GPa: NaMgF3 (perovskite) → NaMgF3 (post-perovskite) → NaMgF3 (Sb2S3-type) → NaF (B2-type) + NaMg2F5 (P21/c) → NaF (B2) + MgF2 (cotunnite-type). Our results demonstrate the existence of an Sb2S3-type post-post-perovskite ABX3 phase. We also experimentally demonstrate the formation of the P21/c AB2X5 phase which has been proposed theoretically to be a common high-pressure phase in ABX3 systems. Our study provides an experimental observation of the full sequence of phase transitions from perovskite to post-perovskite to post-post-perovskite followed by 2-stage breakdown to binary compounds. Notably, a similar sequence of transitions is predicted to occur in MgSiO3 at ultrahigh pressures, where it has implications for the mineralogy and dynamics in the deep interior of large, rocky extrasolar planets.


2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


Sign in / Sign up

Export Citation Format

Share Document