A diamond anvil cell with resistive heating for high pressure and high temperature x-ray diffraction and absorption studies

2008 ◽  
Vol 79 (8) ◽  
pp. 085103 ◽  
Author(s):  
Sebastien Pasternak ◽  
Giuliana Aquilanti ◽  
Sakura Pascarelli ◽  
Roberta Poloni ◽  
Bernard Canny ◽  
...  
2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


Author(s):  
Lun Xiong ◽  
Pu Tu ◽  
Yongqing Hu ◽  
Xiang Hou ◽  
Shiyun Wu ◽  
...  

The equation of state (EOS) of mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text] Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 was studied by synchrotron radiation X-ray diffraction (XRD) at room-temperature in a diamond anvil cell (DAC). The results showed that the hexagonal structure is maintained to the highest pressure of 23.1 GPa. The bulk modulus and its first derivative obtained from XRD data are [Formula: see text] GPa and [Formula: see text], respectively. In addition, we have investigated the high-pressure electrical conductivity of the mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 to 22.9 GPa in a DAC. It is found that the resistance decreases with the increase of pressure and changes exponentially.


2014 ◽  
Vol 28 (25) ◽  
pp. 1450168 ◽  
Author(s):  
Nirup Bandaru ◽  
Ravhi S. Kumar ◽  
Jason Baker ◽  
Oliver Tschauner ◽  
Thomas Hartmann ◽  
...  

Structural behavior of bulk WS 2 under high pressure was investigated using synchrotron X-ray diffraction and diamond anvil cell up to 52 GPa along with high temperature X-ray diffraction and high pressure Raman spectroscopy analysis. The high pressure results obtained from X-ray diffraction and Raman analysis did not show any pressure induced structural phase transformations up to 52 GPa. The high temperature results show that the WS 2 crystal structure is stable upon heating up to 600°C. Furthermore, the powder X-ray diffraction obtained on shock subjected WS 2 to high pressures up to 10 GPa also did not reveal any structural changes. Our results suggest that even though WS 2 is less compressible than the isostructural MoS 2, its crystal structure is stable under static and dynamic compressions up to the experimental limit.


1989 ◽  
Vol 22 (1) ◽  
pp. 61-63 ◽  
Author(s):  
J. S. Olsen ◽  
L. Gerward ◽  
U. Benedict ◽  
H. Luo ◽  
O. Vogt

High-pressure X-ray diffraction studies have been performed on ThP using synchrotron radiation and a diamond-anvil cell. The bulk modulus B 0 and its pressure derivative B′0 have been determined (B 0 = 137 GPa; B′0 = 5.1). A phase transition from the NaCl structure to the CsCl structure was observed at about 30 GPa.


2006 ◽  
Vol 21 (4) ◽  
pp. 320-322 ◽  
Author(s):  
P. Ch. Sahu ◽  
N. R. Sanjay Kumar ◽  
N. V. Chandra Shekar ◽  
N. Subramanian

An incident beam X-ray collimator for Mao-Bell type diamond anvil cell (DAC) has been developed. Alignment of the collimator is carried out in situ while viewing the image of the collimated X-ray spot formed on a thin layer of fluorescent material spread on the diamond anvil culets with the help of a microscope. Special precaution has been taken to meet the radiation safety requirements during alignment and routine use. This collimator is of immense help for laboratory based high pressure X-ray diffraction experiments.


2005 ◽  
Vol 19 (06) ◽  
pp. 313-316
Author(s):  
X. M. QIN ◽  
Y. YU ◽  
G. M. ZHANG ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In-situ high-pressure energy dispersive X-ray diffraction measurements on CuBa 2- Ca 3 Cu 4 O 10 + δ (Cu-1234) have been performed by using diamond anvil cell (DAC) device with synchrotron radiation. The results suggest that the crystal structure of Cu-1234 superconductor is stable under pressures up to 34 GPa at room temperature. According to the Birch–Murnaghan equation of state, the bulk modulus is obtained to be ~ 150 GPa.


Sign in / Sign up

Export Citation Format

Share Document