Residual load-bearing capacity of fire-exposed concrete beams reinforced with FRP bars

2021 ◽  
Author(s):  
Jan Prokeš ◽  
Iva Rozsypalová ◽  
František Girgle ◽  
Petr Daněk ◽  
Petr Štěpánek
2015 ◽  
Vol 42 (7) ◽  
pp. 449-462
Author(s):  
A.T. Vermeltfoort ◽  
D.R.W. Martens

The results of five experimental test series on masonry walls supported by reinforced concrete beams or slabs are reported and compared to theoretical predictions of the load bearing capacity. The experiments were performed on deep masonry beams built with respectively calcium silicate and clay brick. Investigated parameters were: position of the supports, concrete beam-masonry interface, concrete beam stiffness, type of loading, and height of masonry wall and concrete beam. Based on literature, the method proposed by Davies and Ahmed as well as the method according to Eurocode 6 were used to estimate the load bearing capacity of the tested masonry walls supported by concrete beams. The method of Davies and Ahmed allows for the determination of the stresses and stress resultants in the masonry. The analysis shows that near the support an inclined compressive force acts at the bed joint, which means that a shear-compression stress state exists in the bed joint. Strength evaluation has been carried out using the Mann-Müller criterion that is adopted in Eurocode 6. Based on the test results, it may be concluded that both methods yield conservative values of the load bearing capacity, as could be expected. Before cracking a linear elastic behavior was observed, while after cracking a strut-and-tie model may be applied. To develop more accurate design models, it is recommended to investigate the post-cracking behavior in more detail.


2020 ◽  
Author(s):  
Antonino Recupero ◽  
Nino Spinella ◽  
Antonio Marì ◽  
Jesús Miguel Bairan

An experimental campaign on corroded post-tensioned concrete beams is being carried out at the University of Messina (Italy). The main goal of the research project is to study the influence of the tendon corrosion on the response behaviour of post-tensioned concrete beams subjected to a transversal load. In 2006, six beams were cast with a tendon placed at the centroid of the cross-section. Corrosion of the tendons was artificially induced in each specimen by injecting a chemical solution or an acid in some parts of the duct. The experimental results have showed how external causes, reproduced by artificial defects, can induce several critical issues, and undermine both the durability and the load bearing capacity of the beams. The load bearing capacity of the beam with defects was reduced until half of the one recorded for the specimen with not corroded tendon. In addition, a non-linear and time dependent analysis model, developed at UPC in Barcelona, was used to simulate the response of the tested beams, with the purpose of experimentally verifying the capacity of the model to capture the effects of corrosion along the time. A parametric study was performed with the numerical model to capture the influence of the degree of corrosion, (defined as the % loss of steel mass) on the serviceability response and on the ultimate capacity. By comparing the theoretical and the experimental results, the degree of corrosion was estimated and compared with that observed subsequently on the tested beams. Good correlation was obtained, thus allowing the numerical model to be used as a “virtual lab” to study the influence of several parameters on the structural response of corroded post-tensioned beams.


Author(s):  
N. Vinogradova

Prefabricated monolithic floors are the best solution in terms of cost and time of work. In addition, due to the lightweight filling blocks included in the prefabricated monolithic structure, the overlap has less weight than the classic monolithic or precast slabs. Within the framework of this article, elements of prefabricated monolithic floors — reinforced concrete T-beams with a steel thin-walled profile, which is used primarily as formwork at the stage of construction and installation works, are calculated. Nevertheless, the calculation of the steel profile as an external reinforcement increases the load-bearing capacity of the beams by 50%. To assess the fact effect of the steel thin-walled profile on the strength characteristics of structural elements, experimental studies are conducted. According to the results of the experiment, it is found that the contribution of the steel thin-walled profile to the bearing capacity of the beams is 15%, while if the profile slip due to anchoring in the supporting zones is reduced, the bearing capacity increases by 50-60% compared to similar beams without a profile


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


Sign in / Sign up

Export Citation Format

Share Document