scholarly journals ACCOUNTING THE STEEL PROFILE IN THE CALCULATIONS OF THE LOADING CAPABILITY OF STEEL-CONCRETE BEAMS

Author(s):  
N. Vinogradova

Prefabricated monolithic floors are the best solution in terms of cost and time of work. In addition, due to the lightweight filling blocks included in the prefabricated monolithic structure, the overlap has less weight than the classic monolithic or precast slabs. Within the framework of this article, elements of prefabricated monolithic floors — reinforced concrete T-beams with a steel thin-walled profile, which is used primarily as formwork at the stage of construction and installation works, are calculated. Nevertheless, the calculation of the steel profile as an external reinforcement increases the load-bearing capacity of the beams by 50%. To assess the fact effect of the steel thin-walled profile on the strength characteristics of structural elements, experimental studies are conducted. According to the results of the experiment, it is found that the contribution of the steel thin-walled profile to the bearing capacity of the beams is 15%, while if the profile slip due to anchoring in the supporting zones is reduced, the bearing capacity increases by 50-60% compared to similar beams without a profile

2021 ◽  
Vol 1203 (2) ◽  
pp. 022051
Author(s):  
Andrii Mazurak ◽  
Roman Kinasz ◽  
Ivan Kovalyk ◽  
Rostyslav Mazurak ◽  
Vitaliy Kalchenko

Abstract Reinforcement bending reinforced concrete structures by increasing the cross section and assessing the load-bearing capacity of the inclined section such elements is an urgent problem, as not yet accumulated adequate research data on the stress-strain state such structures in the span, which works on shear and shear bending moment and transverse force. Analyzing the development theories calculation reinforced concrete elements inclined to the longitudinal axis, we can identify many areas, the main approach of which was based on the calculation using the bases of material resistance, and the use of empirical dependencies. Theoretical approaches calculation the European construction magazine RILEM TC, SNiP 2.03.01.-84* are considered, DBN B.2.6-98 2009 (Eurocode 2), US ACI 318-19. Experimental studies reinforced concrete elements to determine the load-bearing capacity inclined sections were performed on the basis of 5 samples reinforced concrete beams, 14 reinforced samples of reinforced concrete and shotcrete a total of 19 pieces in four series. Beams were made of concrete in each series fck = 19.08 MPa; fck = 27.74 MPa; fck = 20.48 MPa; fck = 20.48 MPa, respectively, reinforced samples with concrete fck = 17.95 MPa; fck = 19.5 MPa (shotcrete fck = 31.00 MPa); shotcrete fck = 19.9 MPa; fck = 19.9 MPa. Also for the manufacture and reinforcement beams used flat and U-shaped frames with working longitudinal reinforcement Ø22, Ø16, Ø12, Ø10, Ø6 A400C, and transverse reinforcement Ø6 A240C (step 120 mm). Reinforcement inclined sections of the experimental beams was performed on one, two or three sides, depending on the variant of the sample and the type of frame flat or U-shaped. Investigations of beams were performed according to the static scheme - a beam on two supports, span L=2100 mm. Deformations of concrete and reinforcement in the samples when determining the bearing capacity of inclined sections were measured using microindicators of the clock type, strain gauges. According to the results theoretical and experimental studies the bearing capacity inclined sections to the longitudinal axis, we can see a significant reassessment between the theoretical values inclined sections according to the new DBN B.2.6.-98: 2009 (Eurocode 2) over the actual results obtained during testing samples 53-67% for conventional beams, and 27-50% for reinforced beams. The results US regulations ACI 318-19 showed convergence of results in the range of 2-9% for samples without reinforcement and 1-7% for samples with reinforcement, but the values show the excess of experimental data over theoretical, indicating the impossibility of accurately determining the actual final bearing capacity. The results the calculation obtained by the method of SNiP 2.03.01-84*, both unreinforced and reinforced beams has a satisfactory agreement with the experimental values in the range of 6-10%.


Author(s):  
В. А. Шендрик

Постановка задачи. Рассматривается задача разработки методики расчета несущей способности гибридных железобетонных стоек, предназначенных для стоечных опор мостовых сооружений с внешними композитными (стеклопластиковыми) оболочками. Результаты. Сформулированы теоретические зависимости для определения напряжений и относительных деформаций конструктивных элементов гибридной стойки в продольном и поперечном направлениях. Разработанные формулы учитывают совместную работу всесторонне сжатого бетонного ядра с анизотропной стеклопластиковой оболочкой, но не учитывают силовое и средовое воздействие непосредственно на композитную оболочку. Выводы. Полученные теоретические зависимости работы элементов гибридной стойки позволяют разработать методику расчета несущей способности гибридных стоек для опор мостовых сооружений. Результаты исследования предлагается применять в расчетах гибридных стоечных опор мостовых сооружений с элементами из композитных материалов. Statement of the problem. The problem of development of a technique of calculation of the load-bearing capacity of the hybrid reinforced concrete racks intended for rack supports of bridge constructions with external composite (fiberglass) covers is explored. Results. Theoretical dependences for identifying the stresses and relative deformations of structural elements of a hybrid rack in the longitudinal and cross directions are formulated. The resulting formulas take into consideration the joint work of a comprehensively compressed concrete core with an anisotropic fiberglass shell, but do not account for the force and environmental effects directly on the composite shell. Conclusions. The resulting theoretical dependences of the operation of the elements of the hybrid rack enable us to develop a method for calculating the load-bearing capacity of hybrid racks for the supports of bridge structures. It is suggested that the results of the research are applied in calculations of hybrid rack supports of bridge constructions with elements from composite materials.


2020 ◽  
Vol 23 (11) ◽  
pp. 2276-2291
Author(s):  
Rui Pang ◽  
Yibo Zhang ◽  
Longji Dang ◽  
Lanbo Zhang ◽  
Shuting Liang

This article proposes a new type of discrete connected precast reinforced concrete diaphragm floor system that consists of precast flat slabs and slab joint connectors. An experimental investigation of discrete connected new-type precast reinforced concrete diaphragm under a vertical distributed static load was conducted, and the effect of slab joint connectors on the load-bearing capacity was evaluated. Then, a finite element analysis of discrete connected new-type precast reinforced concrete diaphragm, precast reinforced concrete floors without slab connectors, and cast-in-situ reinforced concrete floor were performed to understand their working mechanism and determine the differences in load-bearing behavior. The results indicate that the load-bearing capacity and stiffness of discrete connected new-type precast reinforced concrete diaphragm increase considerably as the hairpin and cover plate hybrid slab joint connectors can efficiently connect adjacent precast slabs and enable them to work together under a vertical load by transmitting the shear and moment forces in the orthogonal slab laying direction. The deflection of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction is mainly caused by the opening deformation of the slab joint and the rotational deformation of the precast slabs. This flexural deformation feature can provide reference for establishing the bending stiffness analytical model of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction, which is vitally important for foundation of the vertical bearing capacity and deformation calculation method. The deflection and crack distribution patterns infer that the discrete connected new-type precast reinforced concrete diaphragm processes the deformation characteristic of two-way slab floor, which can provide a basis for the theoretical analysis of discrete connected new-type precast reinforced concrete diaphragm.


2019 ◽  
Vol 97 ◽  
pp. 04059 ◽  
Author(s):  
Alexey Dem’yanov ◽  
Vladymir Kolchunov ◽  
Igor Iakovenko ◽  
Anastasiya Kozarez

It is presented the formulation and solution of the load bearing capacity of statically indeterminable systems “reinforced concrete beam – deformable base” by spatial cross-sections under force and deformation effects. The solution of problem is currently practically absent in general form. It has been established the relationship between stresses and strains of compressed concrete and tensile reinforcement in the form of diagrams. The properties of the base model connections are described based on a variable rigidity coefficient. It is constructed a system of n equations in the form of the initial parameters method with using the modules of the force (strain) action vector. The equations of state are the dependences that establish the relationship between displacements which are acting on the beam with load. Constants of integration are determined by recurrent formulas. It makes possible to obtain the method of initial parameters in the expanded form and, consequently, the method of displacements for calculating statically indefinable systems. The values of the effort obtained could be used to determine the curvature and rigidity of the sections in this way. It is necessary not to set the vector modulusP, the deformation is set in any section (the module is considered as an unknown) during the problem is solving. This allows us to obtain an unambiguous solution even in the case when the dependence M–χ has a downward section, i.e one value of moment can correspond to two values of curvature.


2015 ◽  
Vol 42 (7) ◽  
pp. 449-462
Author(s):  
A.T. Vermeltfoort ◽  
D.R.W. Martens

The results of five experimental test series on masonry walls supported by reinforced concrete beams or slabs are reported and compared to theoretical predictions of the load bearing capacity. The experiments were performed on deep masonry beams built with respectively calcium silicate and clay brick. Investigated parameters were: position of the supports, concrete beam-masonry interface, concrete beam stiffness, type of loading, and height of masonry wall and concrete beam. Based on literature, the method proposed by Davies and Ahmed as well as the method according to Eurocode 6 were used to estimate the load bearing capacity of the tested masonry walls supported by concrete beams. The method of Davies and Ahmed allows for the determination of the stresses and stress resultants in the masonry. The analysis shows that near the support an inclined compressive force acts at the bed joint, which means that a shear-compression stress state exists in the bed joint. Strength evaluation has been carried out using the Mann-Müller criterion that is adopted in Eurocode 6. Based on the test results, it may be concluded that both methods yield conservative values of the load bearing capacity, as could be expected. Before cracking a linear elastic behavior was observed, while after cracking a strut-and-tie model may be applied. To develop more accurate design models, it is recommended to investigate the post-cracking behavior in more detail.


Sign in / Sign up

Export Citation Format

Share Document