Numerical investigation of flows around an axisymmetric body of revolution by using Reynolds-stress model based hybrid Reynolds-averaged Navier–Stokes/large eddy simulation

2021 ◽  
Vol 33 (8) ◽  
pp. 085115
Author(s):  
Yi Liu ◽  
Zhiteng Zhou ◽  
Lixing Zhu ◽  
Shizhao Wang
2018 ◽  
Vol 853 ◽  
pp. 537-563 ◽  
Author(s):  
Praveen Kumar ◽  
Krishnan Mahesh

Wall-resolved large-eddy simulation (LES) is used to simulate flow over an axisymmetric body of revolution at a Reynolds number, $Re=1.1\times 10^{6}$, based on the free-stream velocity and the length of the body. The geometry used in the present work is an idealized submarine hull (DARPA SUBOFF without appendages) at zero angle of pitch and yaw. The computational domain is chosen to avoid confinement effects and capture the wake up to fifteen diameters downstream of the body. The unstructured computational grid is designed to capture the fine near-wall flow structures as well as the wake evolution. LES results show good agreement with the available experimental data. The axisymmetric turbulent boundary layer has higher skin friction and higher radial decay of turbulence away from the wall, compared to a planar turbulent boundary layer under similar conditions. The mean streamwise velocity exhibits self-similarity, but the turbulent intensities are not self-similar over the length of the simulated wake, consistent with previous studies reported in the literature. The axisymmetric wake shifts from high-$Re$ to low-$Re$ equilibrium self-similar solutions, which were only observed for axisymmetric wakes of bluff bodies in the past.


Author(s):  
Lorenzo Mazzei ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Fabio Turrini

This paper reports the main findings of a numerical investigation aimed at characterizing the flow field and the wall heat transfer resulting from the interaction of a swirling flow provided by lean-burn injectors and a slot cooling system, which generates film cooling in the first part of the combustor liner. In order to overcome some well-known limitations of Reynolds-averaged Navier–Stokes (RANS) approach, e.g., the underestimation of mixing, the simulations were performed with hybrid RANS–large eddy simulation (LES) models, namely, scale-adaptive simulation (SAS)–shear stress transport (SST) and detached eddy simulation (DES)–SST, which are proving to be a viable approach to resolve the main structures of the flow field. The numerical results were compared to experimental data obtained on a nonreactive three-sector planar rig developed in the context of the EU project LEMCOTEC. The analysis of the flow field has highlighted a generally good agreement against particle image velocimetry (PIV) measurements, especially for the SAS–SST model, whereas DES–SST returns some discrepancies in the opening angle of the swirling flow, altering the location of the corner vortex. Also the assessment in terms of Nu/Nu0 distribution confirms the overall accuracy of SAS–SST, where a constant overprediction in the magnitude of the heat transfer is shown by DES–SST, even though potential improvements with mesh refinement are pointed out.


2016 ◽  
Vol 18 (4) ◽  
pp. 333-350 ◽  
Author(s):  
Phoevos Koukouvinis ◽  
Homa Naseri ◽  
Manolis Gavaises

The aim of this article is to assess the impact of turbulence and cavitation models on the prediction of diesel injector nozzle flow. Two nozzles are examined, an enlarged one, operating at incipient cavitation, and an industrial injector tip, operating at developed cavitation. The turbulence model employed includes the re-normalization group k–ε, realizable k–ε and k–ω shear stress transport Reynolds-averaged Navier–Stokes models; linear pressure–strain Reynolds stress model and the wall adapting local eddy viscosity large eddy simulation model. The results indicate that all Reynolds-averaged Navier–Stokes and the Reynolds stress turbulence models have failed to predict cavitation inception due to their limitation to resolve adequately the low pressure existing inside vortex cores, which is responsible for cavitation development in this particular flow configuration. Moreover, Reynolds-averaged Navier–Stokes models failed to predict unsteady cavitation phenomena in the industrial injector. However, the wall adapting local eddy viscosity large eddy simulation model was able to predict incipient and developed cavitation, while also capturing the shear layer instability, vortex shedding and cavitating vortex formation. Furthermore, the performance of two cavitation methodologies is discussed within the large eddy simulation framework. In particular, a barotropic model and a mixture model based on the asymptotic Rayleigh–Plesset equation of bubble dynamics have been tested. The results indicate that although the solved equations and phase change formulation are different in these models, the predicted cavitation and flow field were very similar at incipient cavitation conditions. At developed cavitation conditions, standard cavitation models may predict unrealistically high liquid tension, so modifications may be essential. It is also concluded that accurate turbulence representation is crucial for cavitation in nozzle flows.


AIAA Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Tanner B. Nielsen ◽  
Jack R. Edwards ◽  
Harsha K. Chelliah ◽  
Damien Lieber ◽  
Clayton Geipel ◽  
...  

Author(s):  
Albert Ruprecht ◽  
Ralf Neubauer ◽  
Thomas Helmrich

The vortex instability in a spherical pipe trifurcation is investigated by applying a Very Large Eddy Simulation (VLES). For this approach an new adaptive turbulence model based on an extended version of the k-ε model is used. Applying a classical Reynolds-averaged Navier-Stokes-Simulation with the standard k-ε model is not able to forecast the vortex instability. However the prescribed VLES method is capable to predict this flow phenomenon. The obtained results show a reasonable agreement with measurements in a model test.


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


Sign in / Sign up

Export Citation Format

Share Document