Quantifying the spatiotemporal evolution of the turbulent horseshoe vortex in front of a vertical cylinder

2022 ◽  
Vol 34 (1) ◽  
pp. 015110
Author(s):  
Wen-Gang Qi ◽  
Jun Liu ◽  
Fu-Ping Gao ◽  
Biao Li ◽  
Qi-Gang Chen
Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2687
Author(s):  
Shaohua Wang ◽  
Shiyu Yang ◽  
Zhiguo He ◽  
Li Li ◽  
Yuezhang Xia

In ocean engineering and coastal environmental studies, local scour around a submerged structure is a typical issue, which is affected by the inclination of the structure. To investigate the effect of inclination directions and angles on flow structure and the bed morphology, a three-dimensional numerical model of a submerged inclined cylinder was established. In this model, the hydrodynamics are solved from the RANS (Reynolds-averaged Navier–Stokes) equations closed with the RNG k-ε turbulence model, while the bed morphology evolution is captured by the sediment transport model. In the case of vertical-cylinder scour, the simulation results agree well with existing laboratory experiments. In the cases of inclined-cylinder scour, the results show that the inclination direction not only changes the intensity and the location of the downflow but also modulates the pattern of the horseshoe vortex in front of the cylinder, thus influencing the local scour depth and the morphology of the bed. Compared with the case of vertical cylinder, the scour around an upstream-inclined cylinder is deeper, mainly due to the enhancement of downflow in front of the cylinder. The scour around a downstream-inclined cylinder is shallower and broader due to the weakened downflow and accelerated incoming flow. The maximum scour depth decreases with the inclination angle in the downstream-inclination case. In the upstream-inclination case, the maximum scour depth does not vary monotonously with the inclination angle, which results from a competitive effect of the horseshoe vortex and downflow in the front of the cylinder.


Author(s):  
Zeki Ozgur Gokce ◽  
Cengiz Camci

Secondary flow characteristics like horseshoe vortices and related total pressure losses decrease turbine efficiency. Computerized simulations of potentially favorable modifications in turbine systems could provide a fast, numerical and inexpensive method of evaluating their effects on flow properties: This paper consists of a comparative numerical study of the flow characteristics of a domain containing a vertical cylinder subjected to cross flow and upstream endwall modifications. Analyzing the flow around a turbine nozzle guide vane (NGV) could be simplified by modeling it as a vertical cylinder with a diameter proportional to the leading edge diameter of the blade, and adding upstream endwall fences of varying dimensions and alignments could attenuate the development of a horseshoe vortex. A commercial computational fluid dynamics (CFD) software package, Fluent, was used for the numerical analysis. To validate the modeling strategy, experimental data previously reported in the literature for conventional cylinders in cross flow were compared to the current predictions. A grid independence study was also performed. The lateral distance between the two legs of the horseshoe vortex downstream of the cylinder was decreased by 7% to 14%. All fence types effectively changed the location of the main horseshoe vortex roll-up. The height of the fence was more influential than the length of the fence in modifying flow characteristics. The existence of the fences slightly increased the mass-averaged total pressure loss far downstream of the cylinder; however, beneficial near-fence flow characteristics were observed in all cases. Also, it was noted that an endwall fence could possibly result in decreased interaction between the horseshoe vortices created by consecutive blades in a row of NGV blades, which would be expected to result in improved flow conditions within actual turbine passages.


Sign in / Sign up

Export Citation Format

Share Document