Horseshoe vortex system in the vicinity of the vertical cylinder mounted on a flat plate

2007 ◽  
Vol 18 (2) ◽  
pp. 57-68 ◽  
Author(s):  
Besir Sahin ◽  
N. Adil Ozturk ◽  
Hüseyin Akilli
1990 ◽  
Vol 112 (4) ◽  
pp. 393-401 ◽  
Author(s):  
P. A. Eibeck

The flow downstream of the intersection of both a circular and a tapered cylinder with a flat plate was examined at ReD = 1.3 × 105 using surface visualization, five-hole-probe anemometry, and flow visualization. A pair of large, counter-rotating swirls with common flow away from the wall and with centers over one diameter away from the wall was present downstream of both obstacles. It is suggested that the large, swirling pair are formed in the near wake of an obstacle that is exposed to symmetrical channel flow. A pair of smaller counter-rotating vortices with common flow toward the wall was observed embedded in the wall-shear flow eight diameters downstream of the tapered cylinder. This implies that the legs of the horseshoe vortex system only propagate downstream behind the streamlined obstacle shape.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2687
Author(s):  
Shaohua Wang ◽  
Shiyu Yang ◽  
Zhiguo He ◽  
Li Li ◽  
Yuezhang Xia

In ocean engineering and coastal environmental studies, local scour around a submerged structure is a typical issue, which is affected by the inclination of the structure. To investigate the effect of inclination directions and angles on flow structure and the bed morphology, a three-dimensional numerical model of a submerged inclined cylinder was established. In this model, the hydrodynamics are solved from the RANS (Reynolds-averaged Navier–Stokes) equations closed with the RNG k-ε turbulence model, while the bed morphology evolution is captured by the sediment transport model. In the case of vertical-cylinder scour, the simulation results agree well with existing laboratory experiments. In the cases of inclined-cylinder scour, the results show that the inclination direction not only changes the intensity and the location of the downflow but also modulates the pattern of the horseshoe vortex in front of the cylinder, thus influencing the local scour depth and the morphology of the bed. Compared with the case of vertical cylinder, the scour around an upstream-inclined cylinder is deeper, mainly due to the enhancement of downflow in front of the cylinder. The scour around a downstream-inclined cylinder is shallower and broader due to the weakened downflow and accelerated incoming flow. The maximum scour depth decreases with the inclination angle in the downstream-inclination case. In the upstream-inclination case, the maximum scour depth does not vary monotonously with the inclination angle, which results from a competitive effect of the horseshoe vortex and downflow in the front of the cylinder.


Author(s):  
Zhongran Chi ◽  
Chang Han ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

A tripod cylindrical film hole with asymmetric side holes is studied numerically and experimentally on a flat plate for higher film cooling effectiveness. Firstly, the influences of geometrical parameters are studied and the optimum configurations of the asymmetric tripod hole are found in a DoE optimization study based on an improved numerical model for film cooling prediction, in which more than one hundred 3D CFD simulations are carried out. Then one optimum configuration of the asymmetric tripod hole is examined experimentally using pressure-sensitive paint (PSP) measurements, and compared against the experimental results of the simple cylindrical film hole and a well-designed shaped film hole. The flow and heat transfer characteristics of the asymmetric tripod holes were explored from the DoE results. The side holes can form a shear vortex system or an anti-kidney vortex system when proper spanwise distances of them are adopted, which laterally transports the coolant and form a favorable coolant coverage. According to the experimental results, the cooling performance of the optimized asymmetric tripod hole is significantly better than that of the simple cylindrical hole, especially at high blowing ratios. And the optimized asymmetric tripod hole can provide almost the same or even higher film cooling effectiveness on the flat plate compared with the shaped hole in the same flow conditions.


The general form of the flow behind an infinitely long thin flat plate inclined at a large angle to a fluid stream of infinite extent has been known for many years past. The essential features of the motion are illustrated in the smoke photograph given in fig. 1, Plate 6. At the edges, thin bands of vorticity are generated, which separate the freely-moving fluid from the “dead-water” region at the back of the plate; and at some distance behind, these vortex bands on account of their lack of stability roll up and form what is now commonly known as a vortex street (see fig. 2). Various theories for calculating the resistance of the plate have also been advanced from time to time. One of the earliest is the theory of “discontinuous” motion due to Kirchhoff and Rayleigh, who obtained the expression π sin α/4 + π sin α ρV 0 2 b (see symbols) for the normal force per unit length of the plate. More recently Kármán has obtained a formula for the resistance of a plate normal to the general flow, in terms of the dimensions of the vortex system at some distance behind the plate. In spite, however, of these and other important investigations, much more remains to be discovered before it can be said that the phenomenon of the flow is completely understood. No attempt has hitherto been made, as far as the writers are aware, to determine experimentally, at incidences below 90°, the frequency and speed with which the vortices pass downstream; the dimensions of the vortex system; the average strength of the individual vortices; or the rate at which vorticity is leaving the edges of the plate. The present investigation has been undertaken to furnish information on these features of the flow.


2014 ◽  
Vol 28 (2) ◽  
pp. 527-537 ◽  
Author(s):  
Muhammad Yamin Younis ◽  
Hua Zhang ◽  
Bo Hu ◽  
Zaka Muhammad ◽  
Saqib Mehmood

1974 ◽  
Vol 96 (4) ◽  
pp. 455-458 ◽  
Author(s):  
L. E. Wiles ◽  
J. R. Welty

An experimental investigation of laminar natural convection heat transfer from a uniformly heated vertical cylinder immersed in an effectively infinite pool of mercury is described. A correlation was developed for the local Nusselt number as a function of local modified Grashof number for each cylinder. A single equation incorporating the diameter-to-length ratio was formulated that satisfied the data for all three cylinders. An expression derived by extrapolation of the results to zero curvature (the flat plate condition) was found to agree favorably with others’ work, both analytical and experimental. The influence of curvature upon the heat transfer was found to be small but significant. It was established that the effective thermal resistance through the boundary layer is less for a cylinder of finite curvature than for a flat plate. Consequently, local heat transfer coefficients for cylinders are larger than those for flat plates operating under identical conditions.


Sign in / Sign up

Export Citation Format

Share Document