gene disruption
Recently Published Documents


TOTAL DOCUMENTS

911
(FIVE YEARS 82)

H-INDEX

103
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Milo Johnson ◽  
Michael M. Desai

As an adapting population traverses the fitness landscape, its local neighborhood (i.e., the collection of fitness effects of single-step mutations) can change shape because of interactions with mutations acquired during evolution. These changes to the distribution of fitness effects can affect both the rate of adaptation and the accumulation of deleterious mutations. However, while numerous models of fitness landscapes have been proposed in the literature, empirical data on how this distribution changes during evolution remains limited. In this study, we directly measure how the fitness landscape neighborhood changes during laboratory adaptation. Using a barcode-based mutagenesis system, we measure the fitness effects of 91 specific gene disruption mutations in genetic backgrounds spanning 8,000-10,000 generations of evolution in two constant environments. We find that the mean of the distribution of fitness effects decreases in one environment, indicating a reduction in mutational robustness, but does not change in the other. We show that these distribution-level patterns result from biases in variable patterns of epistasis at the level of individual mutations, including fitness-correlated and idiosyncratic epistasis.


2021 ◽  
Author(s):  
Kohji Yamada ◽  
Toya Yamamoto ◽  
Kanon Uwasa ◽  
Keishi Osakabe ◽  
Yoshitaka Takano

Phytopathogenic fungi belonging to the Colletotrichum genus cause devastating damage for many plant species. Among them, Colletotrichum orbiculare is employed as a model fungus to analyze molecular aspects of plant-fungus interactions. Although gene disruption via homologous recombination (HR) was established for C. orbiculare, this approach is laborious due to its low efficiency. Here we developed methods to efficiently generate multiple knockout mutants of C. orbiculare. We first found that CRISPR/Cas9 system massively promoted gene-targeting efficiency. By transiently introducing a CRISPR/Cas9 vector, more than 90 % of obtained transformants were knockout mutants. Furthermore, we optimized a self-excision Cre/loxP marker recycling system for C. orbiculare because limited availability of desired selective markers hampers sequential gene disruption. In this system, integrated selective marker is removable from the genome via Cre recombinase driven by a xylose-inducible promoter, enabling reuse of the same selective marker for the next transformation. Using our CRISPR/Cas9 and Cre/loxP systems, we attempted to identify functional sugar transporters in C. orbiculare. Multiple disruptions of putative quinate transporter genes restrict fungal growth on media containing quinate as a sole carbon source, confirming their functionality as quinate transporters. Our analyses revealed that quinate acquisition is dispensable during fungal infection because this mutant displayed normal virulence to host plants. In addition, we successfully built mutations of 17 cellobiose transporter genes in a strain. From the data of knockout mutants established in this study, we inferred that repetitive rounds of gene disruption using CRISPR/Cas9 and Cre/loxP systems do not cause negative effects for fungal virulence and growth. Therefore, these systems will be powerful tools to perform systematic gene targeting approach for C. orbiculare.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Caroline Miller ◽  
Benjamin G. Gertsen ◽  
Audrey L. Schroeder ◽  
Chin-To Fong ◽  
M. Anwar Iqbal ◽  
...  

AbstractNance–Horan syndrome (NHS) is a rare X-linked dominant disorder caused by mutation in the NHS gene on chromosome Xp22.13. (OMIM 302350). Classic NHS manifested in males is characterized by congenital cataracts, dental anomalies, dysmorphic facial features and occasionally intellectual disability. Females typically have a milder presentation. The majority of reported cases of NHS are the result of nonsense mutations and small deletions. Isolated X-linked congenital cataract is caused by non-recurrent rearrangement-associated aberrant NHS transcription. Classic NHS in females associated with gene disruption by balanced X-autosome translocation has been infrequently reported. We present a familial NHS associated with translocation t(X;19) (Xp22.13;q13.1). The proband, a 28-year-old female, presented with intellectual disability, dysmorphic features, short stature, primary amenorrhea, cleft palate, and horseshoe kidney, but no NHS phenotype. A karyotype and chromosome microarray analysis (CMA) revealed partial monosomy Xp/partial trisomy 19q with the breakpoint at Xp22.13 disrupting the NHS gene. Family history revealed congenital cataracts and glaucoma in the patient’s mother, and congenital cataracts in maternal half-sister and maternal grandmother. The same balanced translocation t(X;19) was subsequently identified in both the mother and maternal half-sister, and further clinical evaluation of the maternal half-sister made a diagnosis of NHS. This study describes the clinical implication of NHS gene disruption due to balanced X-autosome translocations as a unique mechanism causing Nance–Horan syndrome, refines dose effects of NHS on disease presentation and phenotype expressivity, and justifies consideration of karyotype and fluorescence in situ hybridization (FISH) analysis for female patients with familial NHS if single-gene analysis of NHS is negative.


2021 ◽  
Author(s):  
Junyang Sun ◽  
Hongjing Gao ◽  
Danyang Yan ◽  
Yu Liu ◽  
Xianpu Ni ◽  
...  

Abstract BackgroundApramycin is a structurally unique aminoglycoside, used in veterinary medicine or the treatment of Salmonella, Escherichia coli and Pasteurella multocida infections in farm. Although discovered and used many years ago, many biosynthetic steps of apramycin are still obscure. ResultsIn this study, we identified a HemK family methyltransferase, aprI, involved in apramycin biosynthesis. The function of aprI was studied by using gene disruption and biochemical experiments, and a new aminoglycoside antibiotic demethyl-apramycin was purified from aprI disruption strain. Experiments proved that AprI converted demethyl-aprosamine to aprosamine in vitro. Based on this, the apramycin production strain was improved by overexpression the AprI to decrease the impurity production. ConclusionsWe have identified aprI is a 7’-N-methyltransferase gene in apramycin biosynthesis and confirmed the substrate of methyltransferase. Engineering of aprI resulted in a strain producing a new aminoglycoside demethyl-apramycin and apramycin mono-producing strain with less impurity production. Finally, the yield of demethyl-apramycin in apramycin mono-producing strain decreased from 196±36 mg/L to 51±9 mg/L, and the yield of apramycin increased from 2227±320 mg/L to 2331±210 mg/L.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1925
Author(s):  
Mark R. Bruder ◽  
Sadru-Dean Walji ◽  
Marc G. Aucoin

The generation of knock-out viruses using recombineering of bacmids has greatly accelerated scrutiny of baculovirus genes for a variety of applications. However, the CRISPR–Cas9 system is a powerful tool that simplifies sequence-specific genome editing and effective transcriptional regulation of genes compared to traditional recombineering and RNAi approaches. Here, the effectiveness of the CRISPR–Cas9 system for gene disruption and transcriptional repression in the BEVS was compared. Cell lines constitutively expressing the cas9 or dcas9 gene were developed, and recombinant baculoviruses delivering the sgRNA were evaluated for disruption or repression of a reporter green fluorescent protein gene. Finally, endogenous AcMNPV genes were targeted for disruption or downregulation to affect gene expression and baculovirus replication. This study provides a proof-of-concept that CRISPR–Cas9 technology may be an effective tool for efficient scrutiny of baculovirus genes through targeted gene disruption and transcriptional repression.


Author(s):  
Jun-Liang Tu ◽  
Xin-Yuan Bai ◽  
Yong-Liang Xu ◽  
Na Li ◽  
Jun-Wei Xu

Targeted gene insertion or replacement is a promising genome editing tool for molecular breeding and gene engineering. Although CRISPR/Cas9 works well for gene disruption and deletion in Ganoderma lucidum , targeted gene insertion and replacement remains a serious challenge due to the low efficiency of homologous recombination (HR) in these species. In this work, we demonstrate that the DNA double-strand breaks induced by Cas9 were mainly repaired via the non-homologous end joining pathway (NHEJ) at a frequency of 96.7%. To establish an efficient target gene insertion and replacement tool in Ganoderma , we first inactivated the NHEJ pathway via disruption of the Ku70 gene ( ku70 ) using a dual sgRNA-directed gene deletion method. Disruption of the ku70 significantly decreased NHEJ activity in G. lucidum . Moreover, ku70 disruption strains exhibited 96.3% and 93.1% frequencies of a targeted gene insertion and replacement when target DNA orotidine 5’-monophosphate decarboxylase gene ( ura3 ) with 1.5 kb 5’ and 3’ homologous flanking sequences were used as a donor template, compared to 3.3% and 0% for a control strain (Cas9 strain) at these targeted sites, respectively. Our results indicated that ku70 disruption strains were efficient recipients for targeted gene insertion and replacement. This tool will advance our understanding of functional genomics in G. lucidum . Importance Functional genomic studies have been hindered in Ganoderma by the absence of adequate genome engineering tools. Although CRISPR/Cas9 works well for gene disruption and deletion in G. lucidum , targeted gene insertion and replacement has remained a serious challenge due to the low efficiency of homologous recombination in these species, although such precise genome modifications including site mutations, site-specific integrations and allele or promoter replacements would be incredibly valuable. In this work, we inactivated the non-homologous end joining repair mechanism in G. lucidum by disrupting the ku70 using the CRISPR/Cas9 system. Moreover, we established a target gene insertion and replacement method in ku70 -disrupted G. lucidum that possessed high-efficiency gene targeting. This technology will advance our understanding of the functional genomics of G. lucidum.


2021 ◽  
Vol 35 (9) ◽  
Author(s):  
Hong Jo Lee ◽  
Minseok Seo ◽  
Hee Jung Choi ◽  
Deivendran Rengaraj ◽  
Kyung Min Jung ◽  
...  
Keyword(s):  

Author(s):  
Rudy Antoine ◽  
Cyril Gaudin ◽  
Ruben C. Hartkoorn

To help control the spread of drug-resistant tuberculosis and to guide treatment choices, it is important that rapid and accurate molecular diagnostic tools are used. Current molecular diagnostic tools detect the most common antibiotic-resistance-conferring mutations in the form of single nucleotide changes, small deletions, or insertions.


Sign in / Sign up

Export Citation Format

Share Document