Developmental Constraints of Motion Detection Mechanisms in the Kitten

Perception ◽  
1977 ◽  
Vol 6 (5) ◽  
pp. 513-527 ◽  
Author(s):  
Jean-Marc Flandrin ◽  
Marc Jeannerod

The influence of deprivation procedures on the development of motion detection mechanisms has been studied in twenty-two kittens. Superior colliculus neurons did not acquire direction selectivity and normal ocular dominance in animals reared in the dark or in stroboscopic light. Neuron immaturity persisted in spite of a five week additional recovery period in normal conditions. Exposure to unidirectional visual motion for 10 h during the fifth week of postnatal age produced an asymmetric development of the two superior colliculi. Finally, unilateral neonatal ablation of visual cortex permanently impaired development of the ipsilateral superior colliculus. In the same or in different animals, development of optokinetic nystagmus, a typical visuomotor response, was similarly influenced by the global or selective deprivation procedures. These results suggest that motion detection mechanisms (both afferent and efferent) strongly depend upon constraints imposed by the visual world during the first weeks of life.

Author(s):  
Mathew T. Summers ◽  
Malak El Quessny ◽  
Maria B. Feller

Motion is a key feature of the sensory experience of visual animals. The mammalian retina has evolved a number of diverse motion sensors to detect and parse visual motion into behaviorally relevant neural signals. Extensive work has identified retinal outputs encoding directional and nondirectional motion, and the intermediate circuitry underlying this tuning. Detailed circuit mechanism investigation has established retinal direction selectivity in particular as a model system of neural computation.


2004 ◽  
Vol 92 (2) ◽  
pp. 949-958 ◽  
Author(s):  
Richard J. Krauzlis

The superior colliculus (SC) has long been known to be important for the control of saccades, and recent findings indicate that the rostral SC (rSC) plays some role in pursuit as well. The recent finding that the prelude activity of some SC neurons exhibits directional selectivity suggests that the rSC might process visual motion signals relevant for the control of pursuit. We have now tested the activity of buildup neurons in the rSC during the passive viewing of motion stimuli placed within their response field and also during the previewing of visual motion stimuli that were subsequently tracked with pursuit eye movements. We found that rSC buildup neurons typically responded well to motion stimuli, but that they exhibited essentially no selectivity for the direction or speed of visual motion, and that they also responded well to stationary flickering dots. However, during the previewing of visual motion prior to the onset of pursuit, many neurons did exhibit a buildup of activity similar to that exhibited before saccades. These results are inconsistent with the notion that the rSC mediates visual motion signals used to drive pursuit, but instead support the idea that visual motion signals can be used by rSC neurons as part of a mechanism for selecting targets for pursuit and saccades.


2004 ◽  
Vol 16 (1) ◽  
pp. 1-38 ◽  
Author(s):  
Rajesh P. N. Rao

A large number of human psychophysical results have been successfully explained in recent years using Bayesian models. However, the neural implementation of such models remains largely unclear. In this article, we show that a network architecture commonly used to model the cerebral cortex can implement Bayesian inference for an arbitrary hidden Markov model. We illustrate the approach using an orientation discrimination task and a visual motion detection task. In the case of orientation discrimination, we show that the model network can infer the posterior distribution over orientations and correctly estimate stimulus orientation in the presence of significant noise. In the case of motion detection, we show that the resulting model network exhibits direction selectivity and correctly computes the posterior probabilities over motion direction and position. When used to solve the well-known random dots motion discrimination task, the model generates responses that mimic the activities of evidence-accumulating neurons in cortical areas LIP and FEF. The framework we introduce posits a new interpretation of cortical activities in terms of log posterior probabilities of stimuli occurring in the natural world.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Juergen Haag ◽  
Alexander Arenz ◽  
Etienne Serbe ◽  
Fabrizio Gabbiani ◽  
Alexander Borst

How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.


1984 ◽  
Vol 52 (5) ◽  
pp. 941-960 ◽  
Author(s):  
L. Tong ◽  
R. E. Kalil ◽  
P. D. Spear

Previous experiments have found that neurons in the cat's lateral suprasylvian (LS) visual area of cortex show functional compensation following removal of visual cortical areas 17, 18, and 19 on the day of birth. Correspondingly, an enhanced retino-thalamic pathway to LS cortex develops in these cats. The present experiments investigated the critical periods for these changes. Unilateral lesions of areas 17, 18, and 19 were made in cats ranging in age from 1 day postnatal to 26 wk. When the cats were adult, single-cell recordings were made from LS cortex ipsilateral to the lesion. In addition, transneuronal autoradiographic methods were used to trace the retino-thalamic projections to LS cortex in many of the same animals. Following lesions in 18- and 26-wk-old cats, there is a marked reduction in direction-selective LS cortex cells and an increase in cells that respond best to stationary flashing stimuli. These results are similar to those following visual cortex lesions in adult cats. In contrast, the percentages of cells with these properties are normal following lesions made from 1 day to 12 wk of age. Thus the critical period for development of direction selectivity and greater responses to moving than to stationary flashing stimuli in LS cortex following a visual cortex lesion ends between 12 and 18 wk of age. Following lesions in 26-wk-old cats, there is a decrease in the percentage of cells that respond to the ipsilateral eye, which is similar to results following visual cortex lesions in adult cats. However, ocular dominance is normal following lesions made from 1 day to 18 wk of age. Thus the critical period for development of responses to the ipsilateral eye following a lesion ends between 18 and 26 wk of age. Following visual cortex lesions in 2-, 4-, or 8-wk-old cats, about 30% of the LS cortex cells display orientation selectivity to elongated slits of light. In contrast, few or no cells display this property in normal adult cats, cats with lesions made on the day of birth, or cats with lesions made at 12 wk of age or later. Thus an anomalous property develops for many LS cells, and the critical period for this property begins later (between 1 day and 2 wk) and ends earlier (between 8 and 12 wk) than those for other properties.(ABSTRACT TRUNCATED AT 400 WORDS)


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Martha M. Shiell ◽  
François Champoux ◽  
Robert J. Zatorre

After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl’s gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area’s involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.


2005 ◽  
Vol 94 (6) ◽  
pp. 4156-4167 ◽  
Author(s):  
Daniel Zaksas ◽  
Tatiana Pasternak

Neurons in cortical area MT have localized receptive fields (RF) representing the contralateral hemifield and play an important role in processing visual motion. We recorded the activity of these neurons during a behavioral task in which two monkeys were required to discriminate and remember visual motion presented in the ipsilateral hemifield. During the task, the monkeys viewed two stimuli, sample and test, separated by a brief delay and reported whether they contained motion in the same or in opposite directions. Fifty to 70% of MT neurons were activated by the motion stimuli presented in the ipsilateral hemifield at locations far removed from their classical receptive fields. These responses were in the form of excitation or suppression and were delayed relative to conventional MT responses. Both excitatory and suppressive responses were direction selective, but the nature and the time course of their directionality differed from the conventional excitatory responses recorded with stimuli in the RF. Direction selectivity of the excitatory remote response was transient and early, whereas the suppressive response developed later and persisted after stimulus offset. The presence or absence of these unusual responses on error trials, as well as their magnitude, was affected by the behavioral significance of stimuli used in the task. We hypothesize that these responses represent top-down signals from brain region(s) accessing information about stimuli in the entire visual field and about the behavioral state of the animal. The recruitment of neurons in the opposite hemisphere during processing of behaviorally relevant visual signals reveals a mechanism by which sensory processing can be affected by cognitive task demands.


Sign in / Sign up

Export Citation Format

Share Document