Retinal Mechanisms for Motion Detection

Author(s):  
Mathew T. Summers ◽  
Malak El Quessny ◽  
Maria B. Feller

Motion is a key feature of the sensory experience of visual animals. The mammalian retina has evolved a number of diverse motion sensors to detect and parse visual motion into behaviorally relevant neural signals. Extensive work has identified retinal outputs encoding directional and nondirectional motion, and the intermediate circuitry underlying this tuning. Detailed circuit mechanism investigation has established retinal direction selectivity in particular as a model system of neural computation.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Juergen Haag ◽  
Alexander Arenz ◽  
Etienne Serbe ◽  
Fabrizio Gabbiani ◽  
Alexander Borst

How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.


2004 ◽  
Vol 16 (1) ◽  
pp. 1-38 ◽  
Author(s):  
Rajesh P. N. Rao

A large number of human psychophysical results have been successfully explained in recent years using Bayesian models. However, the neural implementation of such models remains largely unclear. In this article, we show that a network architecture commonly used to model the cerebral cortex can implement Bayesian inference for an arbitrary hidden Markov model. We illustrate the approach using an orientation discrimination task and a visual motion detection task. In the case of orientation discrimination, we show that the model network can infer the posterior distribution over orientations and correctly estimate stimulus orientation in the presence of significant noise. In the case of motion detection, we show that the resulting model network exhibits direction selectivity and correctly computes the posterior probabilities over motion direction and position. When used to solve the well-known random dots motion discrimination task, the model generates responses that mimic the activities of evidence-accumulating neurons in cortical areas LIP and FEF. The framework we introduce posits a new interpretation of cortical activities in terms of log posterior probabilities of stimuli occurring in the natural world.


2018 ◽  
Vol 120 (3) ◽  
pp. 1153-1161 ◽  
Author(s):  
Qiang Chen ◽  
Wei Wei

Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.


Perception ◽  
1977 ◽  
Vol 6 (5) ◽  
pp. 513-527 ◽  
Author(s):  
Jean-Marc Flandrin ◽  
Marc Jeannerod

The influence of deprivation procedures on the development of motion detection mechanisms has been studied in twenty-two kittens. Superior colliculus neurons did not acquire direction selectivity and normal ocular dominance in animals reared in the dark or in stroboscopic light. Neuron immaturity persisted in spite of a five week additional recovery period in normal conditions. Exposure to unidirectional visual motion for 10 h during the fifth week of postnatal age produced an asymmetric development of the two superior colliculi. Finally, unilateral neonatal ablation of visual cortex permanently impaired development of the ipsilateral superior colliculus. In the same or in different animals, development of optokinetic nystagmus, a typical visuomotor response, was similarly influenced by the global or selective deprivation procedures. These results suggest that motion detection mechanisms (both afferent and efferent) strongly depend upon constraints imposed by the visual world during the first weeks of life.


2018 ◽  
Vol 4 (1) ◽  
pp. 143-163 ◽  
Author(s):  
Helen H. Yang ◽  
Thomas R. Clandinin

Motion in the visual world provides critical information to guide the behavior of sighted animals. Furthermore, as visual motion estimation requires comparisons of signals across inputs and over time, it represents a paradigmatic and generalizable neural computation. Focusing on the Drosophila visual system, where an explosion of technological advances has recently accelerated experimental progress, we review our understanding of how, algorithmically and mechanistically, motion signals are first computed.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Martha M. Shiell ◽  
François Champoux ◽  
Robert J. Zatorre

After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl’s gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area’s involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.


2005 ◽  
Vol 94 (6) ◽  
pp. 4156-4167 ◽  
Author(s):  
Daniel Zaksas ◽  
Tatiana Pasternak

Neurons in cortical area MT have localized receptive fields (RF) representing the contralateral hemifield and play an important role in processing visual motion. We recorded the activity of these neurons during a behavioral task in which two monkeys were required to discriminate and remember visual motion presented in the ipsilateral hemifield. During the task, the monkeys viewed two stimuli, sample and test, separated by a brief delay and reported whether they contained motion in the same or in opposite directions. Fifty to 70% of MT neurons were activated by the motion stimuli presented in the ipsilateral hemifield at locations far removed from their classical receptive fields. These responses were in the form of excitation or suppression and were delayed relative to conventional MT responses. Both excitatory and suppressive responses were direction selective, but the nature and the time course of their directionality differed from the conventional excitatory responses recorded with stimuli in the RF. Direction selectivity of the excitatory remote response was transient and early, whereas the suppressive response developed later and persisted after stimulus offset. The presence or absence of these unusual responses on error trials, as well as their magnitude, was affected by the behavioral significance of stimuli used in the task. We hypothesize that these responses represent top-down signals from brain region(s) accessing information about stimuli in the entire visual field and about the behavioral state of the animal. The recruitment of neurons in the opposite hemisphere during processing of behaviorally relevant visual signals reveals a mechanism by which sensory processing can be affected by cognitive task demands.


2020 ◽  
Author(s):  
Nardin Nakhla ◽  
Yavar Korkian ◽  
Matthew R. Krause ◽  
Christopher C. Pack

AbstractThe processing of visual motion is carried out by dedicated pathways in the primate brain. These pathways originate with populations of direction-selective neurons in the primary visual cortex, which project to dorsal structures like the middle temporal (MT) and medial superior temporal (MST) areas. Anatomical and imaging studies have suggested that area V3A might also be specialized for motion processing, but there have been very few studies of single-neuron direction selectivity in this area. We have therefore performed electrophysiological recordings from V3A neurons in two macaque monkeys (one male and one female) and measured responses to a large battery of motion stimuli that includes translation motion, as well as more complex optic flow patterns. For comparison, we simultaneously recorded the responses of MT neurons to the same stimuli. Surprisingly, we find that overall levels of direction selectivity are similar in V3A and MT and moreover that the population of V3A neurons exhibits somewhat greater selectivity for optic flow patterns. These results suggest that V3A should be considered as part of the motion processing machinery of the visual cortex, in both human and non-human primates.Significance statementAlthough area V3A is frequently the target of anatomy and imaging studies, little is known about its functional role in processing visual stimuli. Its contribution to motion processing has been particularly unclear, with different studies yielding different conclusions. We report a detailed study of direction selectivity in V3A. Our results show that single V3A neurons are, on average, as capable of representing motion direction as are neurons in well-known structures like MT. Moreover, we identify a possible specialization for V3A neurons in representing complex optic flow, which has previously been thought to emerge in higher-order brain regions. Thus it appears that V3A is well-suited to a functional role in motion processing.


Sign in / Sign up

Export Citation Format

Share Document