Recognition of Positive and Negative Bandpass-Filtered Images

Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 595-602 ◽  
Author(s):  
Tony Hayes ◽  
M Concetta Morrone ◽  
David C Burr

A study is reported in which the significance for vision of low- and high-spatial-frequency components of photographic positive and negative images was investigated by measuring recognition of bandpass-filtered photographs of faces. The results show that a 1.5 octave bandpass-filtered image contains sufficient visual information for good recognition performance, provided the filter is centred close to 20 cycles facewidth−1. At low spatial frequencies negatives are more difficult to recognize than positives, but at high spatial frequencies there is no difference in recognition, implying that it is the low-frequency components of negatives which present difficulties for the visual system.

Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 1047-1058 ◽  
Author(s):  
Howard C Hughes ◽  
David M Aronchick ◽  
Michael D Nelson

It has previously been observed that low spatial frequencies (≤ 1.0 cycles deg−1) tend to dominate high spatial frequencies (≥ 5.0 cycles deg−1) in several types of visual-information-processing tasks. This earlier work employed reaction times as the primary performance measure and the present experiments address the possibility of low-frequency dominance by evaluating visually guided performance of a completely different response system: the control of slow-pursuit eye movements. Slow-pursuit gains (eye velocity/stimulus velocity) were obtained while observers attempted to track the motion of a sine-wave grating. The drifting gratings were presented on three types of background: a uniform background, a background consisting of a stationary grating, or a flickering background. Low-frequency dominance was evident over a wide range of velocities, in that a stationary high-frequency component produced little disruption in the pursuit of a drifting low spatial frequency, but a stationary low frequency interfered substantially with the tracking of a moving high spatial frequency. Pursuit was unaffected by temporal modulation of the background, suggesting that these effects are due to the spatial characteristics of the stationary grating. Similar asymmetries were observed with respect to the stability of fixation: active fixation was less stable in the presence of a drifting low frequency than in the presence of a drifting high frequency.


1999 ◽  
Vol 16 (3) ◽  
pp. 527-540 ◽  
Author(s):  
ISABELLE MARESCHAL ◽  
CURTIS L. BAKER

Neurons in the mammalian visual cortex have been found to respond to second-order features which are not defined by changes in luminance over the retina (Albright, 1992; Zhou & Baker, 1993, 1994, 1996; Mareschal & Baker, 1998a,b). The detection of these stimuli is most often accounted for by a separate nonlinear processing stream, acting in parallel to the linear stream in the visual system. Here we examine the two-dimensional spatial properties of these nonlinear neurons in area 18 using envelope stimuli, which consist of a high spatial-frequency carrier whose contrast is modulated by a low spatial-frequency envelope. These stimuli would fail to elicit a response in a conventional linear neuron because they are designed to contain no spatial-frequency components overlapping the neuron's luminance defined passband. We measured neurons' responses to these stimuli as a function of both the relative spatial frequencies and relative orientations of the carrier and envelope. Neurons' responses to envelope stimuli were narrowband to the carrier spatial frequency, with optimal values ranging from 8- to 30-fold higher than the envelope spatial frequencies. Neurons' responses to the envelope stimuli were strongly dependent on the orientation of the envelope and less so on the orientation of the carrier. Although the selectivity to the carrier orientation was broader, neurons' responses were clearly tuned, suggesting that the source of nonlinear input is cortical. There was no fixed relationship between the optimal carrier and envelope spatial frequencies or orientations, such that nonlinear neurons responding to these stimuli could perhaps respond to a variety of stimuli defined by changes in scale or orientation.


Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 553-562 ◽  
Author(s):  
Marisa Carrasco ◽  
Jesus G Figueroa ◽  
J Douglas Willen

Previous investigations have shown that the response of spatial-frequency-specific channels in the human visual system is differentially affected by adaptation to gratings of distinct spatial frequencies and/or orientations. A study is reported of the effects of adaptation to vertical or horizontal gratings of a high or a low spatial frequency on the extent of the Brentano form of the Müller-Lyer illusion in human observers. It is shown that the illusion decreases after adaptation to vertical gratings of low spatial frequency, but seems unaffected otherwise. These results are consistent with the notion of visual channels that are spatial-frequency and orientation specific, and support the argument that the Müller-Lyer illusion may be due primarily to lower-spatial-frequency components in the Fourier spectra of the image.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 48-48
Author(s):  
B Wink ◽  
J P Harris

It has been suggested that the Parkinsonian visual system is like the normal visual system, but is inappropriately dark-adapted (Beaumont et al, 1987 Clinical Vision Sciences2 123 – 129). Thus it is of interest to ask to what extent dark adaptation of normal subjects produces visual changes like those of Parkinson's disease (PD). One such change is the reduction in apparent contrast of medium and high spatial frequencies in peripheral vision in the illness (Harris et al, 1992 Brain115 1447 – 1457). Normal subjects judged whether the contrast of a peripherally viewed grating was higher or lower than that of a foveally viewed grating, and a staircase technique was used to estimate the point of subjective equality. Judgements were made at four spatial frequencies (0.5 to 4.0 cycles deg−1) and four contrasts (8.0% to 64%). The display, the mean luminance of which was 26 cd m−2, was viewed through a 1.5 lu nd filter in the relatively dark-adapted condition. The ANOVA showed an interaction between dark adaptation and the spatial frequency of the gratings. Dark adaptation reduces the apparent contrast of high-spatial-frequency gratings, an effect which is greater at lower contrasts. This mimics the effect found with PD sufferers, and suggests that dark adaptation may provide a useful model of the PD visual system. In a second experiment, the effect of dark adaptation on the relationship between apparent spatial frequency in the fovea and periphery was investigated. The experiment was similar to the first, except that judgements were made about the apparent spatial frequency, rather than the contrast, of the peripheral grating. ANOVA showed no differential effect of dark adaptation on the apparent spatial frequency of the peripheral grating. This suggests that the observed reduction in apparent contrast of the peripheral gratings in dark-adapted normals and Parkinson's sufferers may reflect relative changes in contrast gain, rather than relative changes in the spatial organisation of receptive fields.


2005 ◽  
Vol 55 (3) ◽  
pp. 245-258 ◽  
Author(s):  
◽  
◽  
◽  

AbstractFlickering light can cause adverse effects in some humans, as can rhythmic spatial patterns of particular frequencies. We investigated whether birds react to the temporal frequency of standard 100 Hz fluorescent lamps and the spatial frequency of the visual surround in the manner predicted by the human literature, by examining their effects on the preferences, behaviour and plasma corticosterone of European starlings (Sturnus vulgaris). We predicted that high frequency lighting (> 30 kHz) and a relatively low spatial frequency on the walls of their cages (0.1 cycle cm−1) would be less aversive than low frequency lighting (100 Hz) and a relatively high spatial frequency (2.5 cycle cm−1). Birds had strong preferences for both temporal and spatial frequencies. These preferences did not always fit with predictions, although there was evidence that 100 Hz was more stressful than 30 kHz lighting, as birds were less active and basal corticosterone levels were higher under 100 Hz lighting. Our chosen spatial frequencies had no overall significant effect on corticosterone levels. Although there are clearly effects of, and interactions between, the frequency of the light and the visual surround on the behaviour and physiology of birds, the pattern of results is not straightforward.


Vision ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 29
Author(s):  
Sabrina Perfetto ◽  
John Wilder ◽  
Dirk B. Walther

The early visual system is composed of spatial frequency-tuned channels that break an image into its individual frequency components. Therefore, researchers commonly filter images for spatial frequencies to arrive at conclusions about the differential importance of high versus and low spatial frequency image content. Here, we show how simple decisions about the filtering of the images, and how they are displayed on the screen, can result in drastically different behavioral outcomes. We show that jointly normalizing the contrast of the stimuli is critical in order to draw accurate conclusions about the influence of the different spatial frequencies, as images of the real world naturally have higher contrast energy at low than high spatial frequencies. Furthermore, the specific choice of filter shape can result in contradictory results about whether high or low spatial frequencies are more useful for understanding image content. Finally, we show that the manner in which the high spatial frequency content is displayed on the screen influences how recognizable an image is. Previous findings that make claims about the visual system’s use of certain spatial frequency bands should be revisited, especially if their methods sections do not make clear what filtering choices were made.


Perception ◽  
1988 ◽  
Vol 17 (4) ◽  
pp. 429-436 ◽  
Author(s):  
Anthony Hayes

Unlike most multitone images, two-tone images such as print, geometric figures, and line drawings are as easy to interpret in photographic negative as in positive form. However, images derived from a multitone original in which intensity values are quantised to two levels are not. Bi-level quantised images, distinct from most other two-tone images, are shown to contain picture related components in their low spatial frequencies. Since it is the low-spatial-frequency components alone of negative images that present difficulties for vision, it is proposed that images which are as easy to interpret in negative as in positive form are those which are readily identified using only their high spatial frequencies.


2016 ◽  
Vol 3 (9) ◽  
pp. 160273 ◽  
Author(s):  
Roger W. Li ◽  
Kayee So ◽  
Thomas H. Wu ◽  
Ashley P. Craven ◽  
Truyet T. Tran ◽  
...  

Our sense of depth perception is mediated by spatial filters at different scales in the visual brain; low spatial frequency channels provide the basis for coarse stereopsis, whereas high spatial frequency channels provide for fine stereopsis. It is well established that monocular blurring of vision results in decreased stereoacuity. However, previous studies have used tests that are broadband in their spatial frequency content. It is not yet entirely clear how the processing of stereopsis in different spatial frequency channels is altered in response to binocular input imbalance. Here, we applied a new stereoacuity test based on narrow-band Gabor stimuli. By manipulating the carrier spatial frequency, we were able to reveal the spatial frequency tuning of stereopsis, spanning from coarse to fine, under blurred conditions. Our findings show that increasing monocular blur elevates stereoacuity thresholds ‘selectively’ at high spatial frequencies, gradually shifting the optimum frequency to lower spatial frequencies. Surprisingly, stereopsis for low frequency targets was only mildly affected even with an acuity difference of eight lines on a standard letter chart. Furthermore, we examined the effect of monocular blur on the size tuning function of stereopsis. The clinical implications of these findings are discussed.


2017 ◽  
Author(s):  
Ghaith Tarawneh ◽  
Vivek Nityananda ◽  
Ronny Rosner ◽  
Steven Errington ◽  
William Herbert ◽  
...  

AbstractRecently, we showed a novel property of the Hassenstein-Reichardt detector: namely, that insect motion detection can be masked by “invisible” noise, i.e. visual noise presented at spatial frequencies to which the animals do not respond when presented as a signal. While this study compared the effect of noise on human and insect motion perception, it used different ways of quantifying masking in two species. This was because the human studies measured contrast thresholds, which were too time-consuming to acquire in the insect given the large number of stimulus parameters examined. Here, we run longer experiments in which we obtained contrast thresholds at just two signal and two noise frequencies. We examine the increase in threshold produced by noise at either the same frequency as the signal, or a different frequency. We do this in both humans and praying mantises (Sphodromantis lineola), enabling us to compare these species directly in the same paradigm. Our results confirm our earlier finding: whereas in humans, visual noise masks much more effectively when presented at the signal spatial frequency, in insects, noise is roughly equivalently effective whether presented at the same frequency or a lower frequency. In both species, visual noise presented at a higher spatial frequency is a less effective mask.Summary StatementWe here show that despite having similar motion detection systems, insects and humans differ in the effect of low and high spatial frequency noise on their contrast thresholds.


2012 ◽  
Vol 25 (0) ◽  
pp. 121
Author(s):  
Marcia Grabowecky ◽  
Aleksandra Sherman ◽  
Satoru Suzuki

We have previously demonstrated a linear perceptual relationship between auditory amplitude-modulation (AM) rate and visual spatial-frequency using gabors as the visual stimuli. Can this frequency-based auditory–visual association influence perception of natural scenes? Participants consistently matched specific auditory AM rates to diverse visual scenes (nature, urban, and indoor). A correlation analysis indicated that higher subjective density ratings were associated with faster AM-rate matches. Furthermore, both the density ratings and AM-rate matches were relatively scale invariant, suggesting that the underlying crossmodal association is between visual coding of object-based density and auditory coding of AM rate. Based on these results, we hypothesized that concurrently presented fast (7 Hz) or slow (2 Hz) AM-rates might influence how visual attention is allocated to dense or sparse regions within a scene. We tested this hypothesis by monitoring eye movements while participants examined scenes for a subsequent memory task. To determine whether fast or slow sounds guided eye movements to specific spatial frequencies, we computed the maximum contrast energy at each fixation across 12 spatial frequency bands ranging from 0.06–10.16 cycles/degree. We found that the fast sound significantly guided eye movements toward regions of high spatial frequency, whereas the slow sound guided eye movements away from regions of high spatial frequency. This suggests that faster sounds may promote a local scene scanning strategy, acting as a ‘filter’ to individuate objects within dense regions. Our results suggest that auditory AM rate and visual object density are crossmodally associated, and that this association can modulate visual inspection of scenes.


Sign in / Sign up

Export Citation Format

Share Document