Distance Perception within near Visual Space

Perception ◽  
10.1068/p3119 ◽  
2001 ◽  
Vol 30 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Alain Viguier ◽  
Gilles Clément ◽  
Yves Trotter
Space ◽  
2020 ◽  
pp. 184-222
Author(s):  
Gary Hatfield

This chapter examines the development of a geometrical framework for understanding and explaining spatial aspects of visual perception, including perception of the sizes, shapes, and positions of things in the field of view. The structure of this framework is built on the fact that vision typically occurs in straight lines (rectilinearly). Within this framework, the chapter selectively focuses on size perception. This focus allows for a comparative examination of how a single problem was treated geometrically by various theorists, ancient, medieval, and modern. The theorists examined are Euclid and Ptolemy, who were extramissionists, and Ibn al-Haytham, Kepler, Descartes, and Berkeley, each of whom adopted, in one way or another, an intromissionist scheme. In comparing Descartes and Berkeley, notice is taken of Berkeley’s interpretive bent in treating Descartes’s account of distance perception in a way that requires mental calculation, where Descartes sometimes offered psychophysiological mechanisms (avoiding mental calculation).


2006 ◽  
Vol 9 (2) ◽  
pp. 285-294 ◽  
Author(s):  
José A. Da Silva ◽  
Elton H. Matsushima ◽  
J. Antonio Aznar-Casanova ◽  
Nilton P. Ribeiro-Filho

The main purpose of the present study was to investigate whether in natural environment, using very large physical distances, there is a trend to overconstancy for distance estimates during development. One hundred and twenty-nine children aged 5 to 13 years old and twenty-one adults (in a control group), participated as observers. The observer's task was to bisect egocentric distances, ranging from 1.0 to 296.0 m, presented in a large open field. The analyses focused on two parameters, constant errors and variable errors, such as measuring accuracy and precision, respectively. A third analysis focused on the developmental pattern of shifts in constancy as a function of age and range of distances. Constant error analysis showed that there are two relevant parameters for accuracy, age, and range of distances. For short distances, there are three developmental stages: 5-7 years, when children have unstable responses, 7-11, underconstancy, and 13 to adulthood, when accuracy is reached. For large distances, there is a two-stage development: 5-11 years, with severe underconstancy, and beyond this age, with mild underconstancy. Variable errors analyses indicate that precision is noted for 7 year-old children, independently of the range of distances. The constancy analyses indicated that there is a shift from constancy (or slightly overconstancy) to underconstancy as a function of physical distance for all age groups. The age difference is noted in the magnitude of underconstancy that occurs in larger distances, where adults presented lower levels of underconstancy than children. The present data were interpreted as due to a developmental change in cognitive processing rather than to changes in visual space perception.


Author(s):  
Dean Rosen

If participants are asked to orient a face half way between frontal view and profile view, they typically choose an angle somewhere between 30 and 40 degrees. In this study, we demonstrate this phenomenon called orientation bias, and we test the hypothesis that it is directly related to presenting the face in the pictorial space of the flat screen rather than in the egocentric visual space of the observer.Participants were required to use a keyboard to rotate a 3D rendering of a human head to orient it at 45 degrees, that is, half way between frontal and profile view. Employing a repeated-measures design, participants completed two blocks in counterbalanced order. Both viewing conditions were implemented in virtual reality. In the first, participants saw a columnar pedestal with a head mounted on top of it in the visual space before them. In the second block, the very same scene was recorded with a fixed camera and projected on a virtual computer screen.The results indicated that the mean angle estimations in visual space (M = 43.01, SD = 5.96) and pictorial space (M = 37.40, SD = 6.99) differed significantly, t(15) = 5.13, p < .001.These differences could be a result of depth compression, which has been previously described in the context of distance perception. Given that interpretation, our results imply that depth compression might be a result of the flatness of the picture plane which is perceived in a “twofold” way alongside the depicted contents of the image.


1987 ◽  
Vol 52 (3) ◽  
pp. 294-299 ◽  
Author(s):  
Michael A. Primus

Variable success in audiometric assessment of young children with operant conditioning indicates the need for systematic examination of commonly employed techniques. The current study investigated response and reinforcement features of two operant discrimination paradigms with normal I7-month-old children. Findings indicated more responses prior to the onset of habituation when the response task was based on complex central processing skills (localization and coordination of auditory/visual space) versus simple detection. Use of animation in toy reinforcers resulted in more than a twofold increase in the number of subject responses. Results showed no significant difference in response conditioning rate or consistency for the response tasks and forms of reinforcement examined.


2000 ◽  
Vol 59 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Rudolf Groner ◽  
Marina T. Groner ◽  
Kazuo Koga

2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2004 ◽  
Author(s):  
Cynthia S. Sahm ◽  
Sarah H. Creem-Regehr ◽  
William B. Thompson ◽  
Peter Willemsen

1991 ◽  
Author(s):  
Sergio S. Fukusima ◽  
Jack M. Loomis ◽  
Jose A. da Silva
Keyword(s):  

2018 ◽  
Author(s):  
Michel Failing ◽  
Benchi Wang ◽  
Jan Theeuwes

Where and what we attend to is not only determined by what we are currently looking for but also by what we have encountered in the past. Recent studies suggest that biasing the probability by which distractors appear at locations in visual space may lead to attentional suppression of high probability distractor locations which effectively reduces capture by a distractor but also impairs target selection at this location. However, in many of these studies introducing a high probability distractor location was tantamount to increasing the probability of the target appearing in any of the other locations (i.e. the low probability distractor locations). Here, we investigate an alternative interpretation of previous findings according to which attentional selection at high probability distractor locations is not suppressed. Instead, selection at low probability distractor locations is facilitated. In two visual search tasks, we found no evidence for this hypothesis: neither when there was only a bias in target presentation but no bias in distractor presentation (Experiment 1), nor when there was only a bias in distractor presentation but no bias in target presentation (Experiment 2). We conclude that recurrent presentation of a distractor in a specific location leads to attentional suppression of that location through a mechanism that is unaffected by any regularities regarding the target location.


Sign in / Sign up

Export Citation Format

Share Document