Laser synthesis of nanocomposite hydrocarbon fuel and CARS diagnostics of its combustion flame

2022 ◽  
Vol 52 (1) ◽  
pp. 100-104
Author(s):  
E V Barmina ◽  
V D Kobtsev ◽  
S A Kostritsa ◽  
S N Orlov ◽  
V V Smirnov ◽  
...  

Abstract We report an analysis of diffusive combustion in oxygen of a composite fuel formed by the addition of aluminium nanoparticles (NPs) to isopropanol. The process of obtaining Al NPs consisted in laser fragmentation of initially large industrial NPs using radiation of a pulsed nanosecond neodymium laser. The size distribution of Al NPs was determined using a measuring disk centrifuge. The average nanoparticle size was 20 nm, which is confirmed by transmission electron microscopy data. A diagnostic system based on coherent anti-Stokes Raman scattering (CARS) was used to experimentally study the diffusive combustion of composite fuel. The temperature distributions were measured in two mutually orthogonal directions (along the flame and in the transverse direction) in pure isopropanol and in isopropanol with the addition of 0.15 wt % of Al nanoparticles.

2015 ◽  
Vol 245 ◽  
pp. 200-203 ◽  
Author(s):  
Maxim Alexandrovich Pugachevskii ◽  
Viktor Igorevich Panfilov

The conditions of formation of the ZrO2 and HfO2 high-temperature (tetragonal and cubic) phases in the ablated nanoparticles were investigated. X-ray diffraction and transmission electron microscopy data demonstrate that laser intensities above 109 W/m2 ensure the formation of the ZrO2 high-temperature phases, while intensities above 5·109 W/m2 do the formation of the HfO2 high-temperature phases. Quantitative content of the high-temperature phases in layers of the ablated nanoparticles increases with raising the intensity. The obtained nanoparticles exhibit good thermal stability.


Sign in / Sign up

Export Citation Format

Share Document