Koenigs function and fractional iterates of probability generating functions

2002 ◽  
Vol 193 (7) ◽  
pp. 1009-1025 ◽  
Author(s):  
V V Goryainov
2019 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Yiping Zhang ◽  
Myron Hlynka ◽  
Percy H. Brill

Probability generating functions for first passage times of Markov chains are found using the method of collective marks. A system of equations is found which can be used to obtain moments of the first passage times. Second passage probabilities are discussed.


1975 ◽  
Vol 12 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Henry Braun

The problem of approximating an arbitrary probability generating function (p.g.f.) by a polynomial is considered. It is shown that if the coefficients rj are chosen so that LN(·) agrees with g(·) to k derivatives at s = 1 and to (N – k) derivatives at s = 0, then LN is in fact an upper or lower bound to g; the nature of the bound depends only on k and not on N. Application of the results to the problems of finding bounds for extinction probabilities, extinction time distributions and moments of branching process distributions are examined.


Author(s):  
Gabi Hanukov ◽  
Uri Yechiali

Two main methods are used to solve continuous-time quasi birth-and-death processes: matrix geometric (MG) and probability generating functions (PGFs). MG requires a numerical solution (via successive substitutions) of a matrix quadratic equation A0 + RA1 + R2A2 = 0. PGFs involve a row vector $\vec{G}(z)$ of unknown generating functions satisfying $H(z)\vec{G}{(z)^\textrm{T}} = \vec{b}{(z)^\textrm{T}},$ where the row vector $\vec{b}(z)$ contains unknown “boundary” probabilities calculated as functions of roots of the matrix H(z). We show that: (a) H(z) and $\vec{b}(z)$ can be explicitly expressed in terms of the triple A0, A1, and A2; (b) when each matrix of the triple is lower (or upper) triangular, then (i) R can be explicitly expressed in terms of roots of $\det [H(z)]$ ; and (ii) the stability condition is readily extracted.


1990 ◽  
Vol 27 (2) ◽  
pp. 251-258 ◽  
Author(s):  
A. W. Kemp ◽  
J. Newton

The paper re-examines Quinn and MacGillivray's (1986) stationary birth-death process for a population of fixed size N consisting of two types of parasite, active and passive, and sets up a more elaborate model for the dichotomy between parasites on hosts with and without open wounds resulting from previous parasite attacks. The probability generating functions for the stationary count distributions are obtained, allowing limiting forms of the distributions to be investigated.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2108
Author(s):  
Weaam Alhadlaq ◽  
Abdulhamid Alzaid

Archimedean copulas form a very wide subclass of symmetric copulas. Most of the popular copulas are members of the Archimedean copulas. These copulas are obtained using real functions known as Archimedean generators. In this paper, we observe that under certain conditions the cumulative distribution functions on (0, 1) and probability generating functions can be used as Archimedean generators. It is shown that most of the well-known Archimedean copulas can be generated using such distributions. Further, we introduced new Archimedean copulas.


Sign in / Sign up

Export Citation Format

Share Document