High vapour pressure deficit results in a rapid decline of leaf water potential and photosynthesis of carrots grown on free-draining, sandy soils

2000 ◽  
Vol 51 (7) ◽  
pp. 839 ◽  
Author(s):  
Mark R. Gibberd ◽  
Neil C. Turner ◽  
Brian R. Loveys

Two carrot (Daucus carota L.) genotypes (Nantes and Imperator) were grown in the field on a coarse-textured, sandy soil. Experiments were conducted over 2 consecutive seasons, one providing cool growing conditions and the other much warmer growing conditions during which the vapour pressure deficit was up to 2-fold higher than in the first season. Changes in growth, soil water content, and environmental conditions were monitored for both seasons, and diurnal measurements of leaf water potential and leaf photosynthesis were taken near maturity. Frequent irrigation maintained bulk soil water content above, or near, field capacity, with the sum of rainfall and irrigation exceeding potential evaporation by 1.4- and 1.3-fold during the cool and warm seasons, respectively. Even under such well-watered conditions, a large diurnal variation in leaf water potential (1200 and 1800 kPa for the cool- and warm-season crops, respectively) was recorded. During the cool season, withholding irrigation for up to 60 h resulted in further reductions in midday leaf water potential. However, there was no effect of withholding irrigation on leaf water potential during the warm season. During both seasons, leaf photosynthetic rate of well-watered plants peaked at around 20 µmol/m2.s in the early morning (0900 hours) and then decreased throughout the day, with the magnitude of the decline associated with the prevailing vapour pressure deficit. Under well-watered conditions, leaf water potential and photosynthesis were both negatively correlated with vapour pressure deficit, for both genotypes. Leaf water potential and photosynthesis were positively correlated with each other and we conclude that a high hydraulic resistance in the plant or soil results in a vapour pressure deficit-induced reduction in leaf water potential, which in turn reduces the rate of leaf photosynthesis.

1984 ◽  
Vol 11 (1) ◽  
pp. 31-35 ◽  
Author(s):  
J. M. Bennett ◽  
K. J. Boote ◽  
L. C. Hammond

Abstract Limited data exist describing the physiological responses of peanut (Arachis hypogaea L.) plants to tissue water deficits. Detailed field experiments which accurately define the water status of both the plant and soil are required to better understand the effects of water stress on a peanut crop. The objectives of the present study were 1) to describe the changes in leaf water potential components during a drying cycle, and 2) to define the relationships among soil water content, leaf water potential, leaf turgor potential, relative water content, leaf-air temperature differential, and leaf diffusive resistance as water stress was imposed on a peanut crop. During a 28-day drying period where both rainfall and irrigation were withheld from peanut plants, midday measurements of the physiological parameters and volumetric soil water contents were taken concurrently. As soil drying progressed, water extraction from the upper soil depths was limited as soil moisture approached 0.04 m3m-3. Leaf water potentials and leaf turgor potentials of nonirrigated plants decreased to approximately −2.0 and 0 MPa, respectively, by the end of the experimental period. Leaf water potentials declined only gradually as the average volumetric soil water content in the upper 90 cm of soil decreased from 0.12 to 0.04 m3m-3. Further reductions in soil water content caused large reductions in leaf water potential. As volumetric soil moisture content decreased slightly below 0.04 m3m-3 in the upper 90 cm, leaf relative water content dropped to 86%, leaf water potential approached −1.6 MPa and leaf turgor potential decreased to 0 MPa. Concurrently, stomatal closure resulted and leaf temperature increased above air temperature. Osmotic potentials measured at 100% relative water content were similar for irrigated and nonirrigated plants, suggesting little or no osmotic regulation.


1988 ◽  
Vol 28 (2) ◽  
pp. 249 ◽  
Author(s):  
S Fukai ◽  
P Inthapan

Several physiological responses were compared, under irrigated and water-stressed conditions, in an attempt to explain the reasons for the greater reduction in dry matter production of rice compared with maize and sorghum in a water-limiting environment. Leaf water potential and leaf rolling were determined weekly, soil water profiles and root length density twice, and leaf osmotic potential once during a long dry period. Root length density of rice was at least as high as that of maize and sorghum in the top 0.6 m layer of soil in both the wet and dry trials. There was no difference in water extraction among the 3 species from this layer, while rice extracted less water than did the other species from below 0.6 m. High variability among replicates precluded any conclusion being drawn regarding root length in the deeper layer. Leaf water potential, measured in the early afternoon, was consistently lower in rice than in maize and sorghum, even when soil water content was high, indicating high internal resistance to the flow of water in the rice plants. The low leaf water potential in rice was accompanied by low osmotic potential, and this assisted in maintenance of turgor and dry matter growth when soil water content was relatively high. As soil water content decreased, however, leaf water potential became very low (less than - 2.5 MPa) and, for rice, leaves rolled tightly.


Attempts to correlate values of stomatal conductance and leaf water potential with particular environmental variables in the field are generally of only limited success because they are simultaneously affected by a number of environmental variables. For example, correlations between leaf water potential and either flux of radiant energy or vapour pressure deficit show a diurnal hysteresis which leads to a scatter diagram if many values are plotted. However, a simple model may be adequate to relate leaf water potential to the flow of water through the plant. The stomatal conductance of illuminated leaves is a function of current levels of temperature, vapour pressure deficit, leaf water potential (really turgor pressure) and ambient CO 2 concentration. Consequently, when plotted against any one of these variables a scatter diagram results. Physiological knowledge of stomatal functioning is not adequate to provide a mechanistic model linking stomatal conductance to all these variables. None the less, the parameters describing the relationships with the variables can be conveniently estimated from field data by a technique of non-linear least squares, for predictive purposes and to describe variations in response from season to season and plant to plant.


2012 ◽  
Vol 39 (5) ◽  
pp. 366 ◽  
Author(s):  
J. G. Pérez-Pérez ◽  
I. C. Dodd ◽  
P. Botía

To determine whether irrigation strategy altered the sensitivity of Citrus leaf gas exchange to soil, plant and atmospheric variables, mature (16-year-old) Fino 49 lemon trees (Citrus limon (L.) Burm. fil. grafted on Citrus macrophylla Wester) were exposed to three irrigation treatments: control (irrigated with 100% of crop potential evapotranspiration, ETc), deficit irrigation (DI) and partial rootzone drying (PRD) treatments,which received 75% ETc during the period of highest evaporative demand and 50% ETc otherwise. Furthermore, to assess the physiological significance of root-to-shoot ABA signalling, the seasonal dynamics of leaf xylem ABA concentration ([X-ABA]leaf) were evaluated over two soil wetting–drying cycles during a 2-week period in summer. Although stomatal conductance (gs) declined with increased leaf-to-air vapour pressure deficit (LAVPD), lower leaf water potential and soil water availability, [X-ABA]leaf was only related to stomatal closure in well irrigated trees under moderate (<2.5 kPa) atmospheric vapour pressure deficit (VPD). Differences in [X-ABA]leaf were not detected between treatments either before or immediately after (<12 h) rewatering the dry side of PRD trees. Leaf water potential was higher in control trees, but decreased similarly in all irrigation treatments as daily LAVPD increased. In contrast, DI and PRD trees showed lower stomatal sensitivity to LAVPD than control trees. Although DI and PRD decreased stomatal conductance and photosynthesis, these treatments did not significantly decrease yield, but PRD increased crop water use efficiency (WUE) by 83% compared with control trees. Thus PRD-induced enhancement of crop WUE in a semiarid environment seems to involve physiological mechanisms other than increased [X-ABA]leaf.


Sign in / Sign up

Export Citation Format

Share Document