scholarly journals Identification of quantitative trait loci (QTLs) influencing early vigour, height, flowering date, and seed size and their implications for breeding of narrow-leafed lupin (Lupinus angustifolius L.)

2008 ◽  
Vol 59 (6) ◽  
pp. 527 ◽  
Author(s):  
Jeffrey G. Boersma ◽  
Chengdao Li ◽  
Karolina Leśniewska ◽  
Krishnapillai Sivasithamparam ◽  
Huaan Yang

We report the first quantitative trait loci (QTL) mapped in an F8 recombinant inbred line (RIL) population of Lupinus angustifolius. Traits mapped were early vigour, days to flowering, height at maturity, and seed size. Twenty-two QTLs were found, located on 13 linkage groups, with alleles beneficial to the crop contributed by both parents. Early vigour was controlled by 8 QTLs on 7 linkage groups. Time to flowering was controlled by 10 QTLs and the height at maturity was found to be under the control of 4 QTLs. Seed size was linked to 2 QTLs. A region linked to the Ku gene that promotes early flowering by removal of the vernalisation requirement appeared to play a role in all 4 traits. The gene mollis controlling soft-seededness appeared to also be linked to early vigour, and iucundis controlling alkaloid production was linked to seed size. Five pairs of QTLs were found to be involved in epistasis, 2 of these having an effect on early vigour and another 3 influencing the time to opening of the first florets. Variation explained for each trait ranged from 28% for seed size, to 88% for days to flowering. We showed that it was possible to use these data to predict genotypes of superior progeny for these traits under Mediterranean conditions. QTL regions were compared on a second published linkage map and regions of conserved synteny with the model legume Medicago truncatula highlighted.

2020 ◽  
Vol 11 ◽  
Author(s):  
Yu Guo ◽  
Meiling Gao ◽  
Xiaoxue Liang ◽  
Ming Xu ◽  
Xiaosong Liu ◽  
...  

2002 ◽  
Vol 2 (3) ◽  
pp. 151-157 ◽  
Author(s):  
Youngkoo Cho ◽  
Victor N. Njiti ◽  
Xinbo Chen ◽  
Kanokporn Triwatayakorn ◽  
My Abdelmajid Kassem ◽  
...  

The objective of this study was to utilize aGlycine maxRIL population to (1) evaluate foliar trigonelline (TRG) content in field-grown soybean, (2) determine the heritability of TRG accumulation, and (3) identify DNA markers linked to quantitative trait loci (QTLs) conditioning variation in TRG accumulation. Frequency distributions of 70 recombinant inbred lines showed statistically no significant departure from normality(P>.05)for TRG accumulation measured at pod development stage (R4). Six different molecular linkage groups (LGs) (B2, C2, D2, G, J, and K) were identified to be linked to QTLs for foliar TRG accumulation. Two unique microsatellite markers (SSR) on two different linkage groups identified QTL significantly associated with foliar TRG accumulation: a region on LG J (Satt285)(P=.0019, R2=15.9%)and a second region on LG C2 (Satt079)(P=.0029, R2=13.4%).


2015 ◽  
Vol 154 (7) ◽  
pp. 1209-1217 ◽  
Author(s):  
A. BOONCHANAWIWAT ◽  
S. SRAPHET ◽  
S. WHANKAEW ◽  
O. BOONSENG ◽  
D. R. SMITH ◽  
...  

SUMMARYCassava (Manihot esculenta Crantz) is an economically important root crop in Thailand, which is ranked the world's top cassava exporting country. Production of cassava can be hampered by several pathogens and pests. Cassava anthracnose disease (CAD) is an important disease caused by the fungus Colletotrichum gloeosporioides f. sp. manihotis. The pathogen causes severe stem damage resulting in yield reductions and lack of stem cuttings available for planting. Molecular studies of cassava response to CAD will provide useful information for cassava breeders to develop new varieties with resistance to the disease. The current study aimed to identify quantitative trait loci (QTL) and DNA markers associated with resistance to CAD. A total of 200 lines of two F1 mapping populations were generated by reciprocal crosses between the varieties Huabong60 and Hanatee. The F1 samples were genotyped based on simple sequence repeat (SSR) and expressed sequence tag-SSR markers and a genetic linkage map was constructed using the JoinMap®/version3·0 program. The results showed that the map consisted of 512 marker loci distributed on 24 linkage groups with a map length of 1771·9 centimorgan (cM) and a mean interval between markers of 5·7 cM. The genetic linkage map was integrated with phenotypic data for the response to CAD infection generated by a detached leaf assay test. A total of three QTL underlying the trait were identified on three linkage groups using the MapQTL®/version4·0 program. Those DNA markers linked to the QTL that showed high statistically significant values with the CAD resistance trait were identified for gene annotation analysis and 23 candidate resistance genes to CAD infection were identified.


Genome ◽  
2012 ◽  
Vol 55 (5) ◽  
pp. 360-369 ◽  
Author(s):  
Wengang Xie ◽  
Joseph G. Robins ◽  
B. Shaun Bushman

Orchardgrass ( Dactylis glomerata L.), or cocksfoot, is indigenous to Eurasia and northern Africa, but has been naturalized on nearly every continent and is one of the top perennial forage grasses grown worldwide. To improve the understanding of genetic architecture of orchardgrass and provide a template for heading date candidate gene search in this species, the goals of the present study were to construct a tetraploid orchardgrass genetic linkage map and identify quantitative trait loci associated with heading date. A combination of SSR markers derived from an orchardgrass EST library and AFLP markers were used to genotype an F1 population of 284 individuals derived from a very late heading Dactylis glomerata subsp. himalayensis parent and an early to mid-heading Dactylis glomerata subsp. aschersoniana parent. Two parental maps were constructed with 28 cosegregation groups and seven consensus linkage groups each, and homologous linkage groups were tied together by 38 bridging markers. Linkage group lengths varied from 98 to 187 cM, with an average distance between markers of 5.5 cM. All but two mapped SSR markers had homologies to physically mapped rice (Oryza sativa L.) genes, and six of the seven orchardgrass linkage groups were assigned based on this putative synteny with rice. Quantitative trait loci were detected for heading date on linkage groups 2, 5, and 6 in both parental maps, explaining between 12% and 24% of the variation.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Jack E. Staub ◽  
Zhanyong Sun ◽  
Sang-Min Chung ◽  
Richard L. Lower

Cucumber (Cucumis sativus L. var. sativus; 2n = 2x = 14), has a narrow genetic base (3% to 8% polymorphism). Nevertheless, several genetic maps exist for this species. It is important to know the degree of colinearity among these maps. Thus, the positions of random amplified polymorphic DNAs, sequenced characterized amplified regions, simple sequence repeat, restriction fragment length polymorphisms, and fluorescent amplified fragment length polymorphism markers were compared in four maps. A previously unreported map was constructed in a narrow cross (processing line 2A × Gy8; C. s. var. sativus; ≈7% polymorphism) and compared with the three published maps [two narrow-based (processing type; C. s. var. sativus; 8% to 12% polymorphism) and a broad-based (C. s. var. sativus × C. s. var. hardwickii (R.) Alef. ≈12%)]. Common makers were identified in seven linkage groups, providing evidence for microsynteny. These common markers were used as anchor markers for map position comparisons of yield component quantitative trait loci. The relative order of anchor markers in each of six linkage groups (linkage groups 1, 2, and 4–7) that had two or more anchor markers within each group was colinear, and instances of microsynteny were detected. Commonalities in the position of some yield component quantitative trait loci exist in linkage groups 1 and 4 of the maps examined, and the general synteny among these maps indicates that identification and mapping of additional anchor markers would lead to successful map merging to increase cucumber map saturation for use in cucumber breeding.


2021 ◽  
Author(s):  
◽  
David T. Ashton

<p>Characterizing the genome and understanding how it influences phenotypic variation is a central goal for studies on evolution. The findings of genomic research are applicable to a wide range of human endeavours, including predicting disease risk, supporting selective breeding programmes, and understanding adaptive variation in natural populations. One industry that could particularly benefit from this knowledge is Aquaculture. In recent years, aquaculture production has been increasing to offset the production limits of wild fisheries. Genomics can be used in aquaculture to quantify variation of captive populations, reconstruct pedigrees, and improve the gains from selective breeding programs. The overall goal of this thesis research was to generate a genome-wide genotyping dataset and investigated several key traits for Australasian snapper (Chrysophrys auratus or Pagrus auratus). The findings will be used to establish one of the first genomics-informed New Zealand aquaculture programmes and provide a better understanding of the genotype-phenotype relationships in this teleost species.  The first two chapters of this thesis provide a review of the literature and establish the background information and context for the research in subsequent data chapters. A brief overview of genomics, fisheries and aquaculture, and the intersection of these two fields are provided in the Chapter 1. An in-depth quantitative review of 146 Quantitative Trait Loci (QTL) studies in teleost fish was then carried out in Chapter 2.  Chapter 3 provides details about the study population and the collection of genotyping data. Genotyping-By-Sequencing (GBS) was used to generate 11K Single Nucleotide Polymorphism (SNP) markers for individuals in the three generation pedigree. Together with phenotypic data the genotyping was used to reconstruct the pedigree, measure inbreeding, and estimate heritability for a range of traits. Parents were identified for 93% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent to the subsequent generations. The average inbreeding level did not change between generations, but significantly different inbreeding levels were observed between offspring from the two founding cohorts and as a result full and half sibling crosses within the group spawning teleost species. Heritability was estimated for a range of traits using both a pedigree relatedness matrix and a genomic relatedness matrix.  Chapter 4, uses the genotyping and phenotyping data to generate a linkage map and carry out a scan for quantitative trait loci (QTLs) associated with growth rate. The linkage map reported in this thesis is one of the highest density maps for any Sparidae species at the time of writing. It contained 24 linkage groups, which represent the 24 snapper chromosomes. Growth QTLs were found on three linkage groups and a scan of available genome data identified three candidate growth genes nearby on the linkage groups.  Chapter 5, uses the genotyping data and images collected during the study to characterize snappers blue spots and search for QTLs associated with spot numbers. QTLs were found on 12 of the 24 linkage groups, of which one was consistent between two QTL methods applied. A scan of available genome data identified the tyrosinase gene in the middle of the putative QTL region, which is a causal gene for iridophore cell numbers that form blue spots in other fish species.  Chapter 6, discuss the implications, future directions, and application of this research to the snapper breeding programme.</p>


2016 ◽  
Vol 42 (9) ◽  
pp. 1309
Author(s):  
Qiang CHEN ◽  
Long YAN ◽  
Ying-Ying DENG ◽  
Er-Ning XIAO ◽  
Bing-Qiang LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document