Detecting Sub-Surface Groundwater Flow in Fractured Rock Using Self-Potential (SP) Methods

2003 ◽  
Vol 2003 (2) ◽  
pp. 1-1 ◽  
Author(s):  
Fritjof Fagerlund ◽  
Graham Heinson
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Tada-nori Goto ◽  
Kazuya Kondo ◽  
Rina Ito ◽  
Keisuke Esaki ◽  
Yasuo Oouchi ◽  
...  

Self-potential (SP) measurements were conducted at Mt. Tsukuba, Japan, which is a nonvolcanic mountain, to infer groundwater flow system in the mountain. Survey routes were set around the northern slope, and the reliability of observed SP anomaly was checked by using SP values along parallel survey routes; the error was almost within 10 mV. The FFT analysis of the spatial SP distribution allows us a separation of raw data into two components with shorter and longer wavelength. In the shorter (altitudinal) wavelength than ∼200 meters, several positive SP peaks of more than 100 mV in magnitude are present, which indicate shallow perched water discharges along the slope. In the regional SP pattern of longer wavelength, there are two major perturbations from the general trend reflecting the topographic effect. By comparing the SP and hydrological data, the perturbation around the foothill is interpreted to be caused by heterogeneous infiltration at the ground surface. The perturbation around the summit is also interpreted to be caused by heterogeneous infiltration process, based on a simplified numerical modeling of SP. As a result, the SP pattern is well explained by groundwater flow and infiltration processes. Thus, SP data is thought to be very useful for understanding of groundwater flow system on a mountain scale.


1995 ◽  
Author(s):  
M. Hammann ◽  
H. R. Maurer ◽  
H. Horstmeyer ◽  
A. G. Green

2002 ◽  
Vol 39 (6) ◽  
pp. 1302-1312 ◽  
Author(s):  
E Z Wang ◽  
Z Q Yue ◽  
L G Tham ◽  
Y Tsui ◽  
H T Wang

Discrete fracture network models can be used to study groundwater flow in fractured rock masses. However, one may find that it is not easy to apply such models to practical projects as it is difficult to investigate every fracture and measure its hydraulic parameters. To overcome such difficulties, a dual fracture model is proposed. Taking into account the hydraulic characteristics of the various elements of the fracture system, a hydrogeological medium is assumed to consist of two components: the dominant fracture network and the fractured rock matrix. As the dominant fracture network consists of large fractures and faults, it controls the groundwater flow in rock masses. Depending on the permeabilities of the in-fill materials, these fractures and faults may serve as channels or barriers of the flow. The fractured rock matrix, which includes rock blocks and numerous small fractures, plays a secondary role in groundwater flow in such medium. Although the small fractures and rock blocks possess low permeability, their numbers and their total porosity are relatively large. Therefore, they provide large volume for groundwater storage. In this paper, the application of the proposed model to simulate the groundwater flow for a hydropower station before and after reservoir storage is reported. The implications of the results on the design of the station are also highlighted.Key words: seepage flow, dual fracture model, dominant fracture, fractured rock matrix, case studies, rock-filled dam.


2011 ◽  
Vol 399 (3-4) ◽  
pp. 185-200 ◽  
Author(s):  
L. Mortimer ◽  
A. Aydin ◽  
C.T. Simmons ◽  
A.J. Love

2002 ◽  
Vol 257 (1-4) ◽  
pp. 174-188 ◽  
Author(s):  
Jan-Olof Selroos ◽  
Douglas D. Walker ◽  
Anders Ström ◽  
Björn Gylling ◽  
Sven Follin

Sign in / Sign up

Export Citation Format

Share Document