scholarly journals Time since fire and average fire interval are the best predictors of Phytophthora cinnamomi activity in heathlands of south-western Australia

2014 ◽  
Vol 62 (7) ◽  
pp. 587 ◽  
Author(s):  
Nicole Moore ◽  
Sarah Barrett ◽  
Kay Howard ◽  
Michael D. Craig ◽  
Barbara Bowen ◽  
...  

Fires are features of ecological communities in much of Australia; however, very little is still known about the potential impact of fire on plant diseases in the natural environment. Phytophthora cinnamomi is an introduced soil-borne plant pathogen with a wide host range, affecting a large proportion of native plant species in Australia and other regions of the world, but its interaction with fire is poorly understood. An investigation of the effects of fire on P. cinnamomi activity was undertaken in the Stirling Range National Park of south-western Australia, where fire is used as a management tool to reduce the negative impact of wildfires and more than 60% of the park is infested with, and 48% of woody plant species are known to be susceptible to, P. cinnamomi. At eight sites confirmed to be infested with P. cinnamomi, the proportion of dead and dying susceptible species was used as a proxy for P. cinnamomi activity. Subset modelling was used to determine the interactive effects of latest fire interval, average fire interval, soil water-holding capacity and pH on P. cinnamomi activity. It was found that the latest and average fire interval were the variables that best explained the variation in the percentage of dead and dying susceptible species among sites, indicating that fire in P. cinnamomi-infested communities has the potential to increase both the severity and extent of disease in native plant communities.


2001 ◽  
Vol 49 (6) ◽  
pp. 761 ◽  
Author(s):  
K. M. Tynan ◽  
C. J. Wilkinson ◽  
J. M. Holmes ◽  
B. Dell ◽  
I. J. Colquhoun ◽  
...  

This study examined the ability of foliar applications of the fungicide phosphite to contain colonisation of Phytophthora cinnamomi in a range of plant species growing in natural plant communities in the northern sandplain and jarrah (Eucalyptus marginata) forest of south-western Australia. Wound inoculation of plant stems with P. cinnamomi was used to determine the efficacy of phosphite over time after application. Colonisation by P. cinnamomi was reduced for 5–24 months after phosphite was applied, depending on the concentration of phosphite used, plant species treated and the time of phosphite application. Plant species within and between plant communities varied considerably in their ability to take up and retain phosphite in inoculated stems and in the in planta concentrations of phosphite required to contain P. cinnamomi. As spray application rates of phosphite increased from 5 to 20 g L–1, stem tissue concentrations increased, as did the ability of a plant species to contain P. cinnamomi. However, at application rates of phosphite above 5 g L–1 phytotoxicity symptoms were obvious in most species, with some plants being killed. So, despite 10 and 20 g L–1 of phosphite being more effective and persistent in controlling P. cinnamomi, these rates are not recommended for application to the plant species studied. The results of this study indicate that foliar application of phosphite has considerable potential in reducing the impact of P. cinnamomi in native plant communities in the short-term. However, in order to maintain adequate control, phosphite should be sprayed every 6–12 months, depending on the species and/or plant community.



2015 ◽  
Vol 16 (2) ◽  
pp. 87-95 ◽  
Author(s):  
N. Grant-Hoffman ◽  
S. Parr ◽  
T. Blanke


2017 ◽  
Vol 18 (3) ◽  
pp. 227-234
Author(s):  
Jessica D Lubell ◽  
Bryan Connolly ◽  
Kristina N Jones


Rhodora ◽  
10.3119/18-11 ◽  
2019 ◽  
Vol 121 (987) ◽  
pp. 159
Author(s):  
Adam J. Ramsey ◽  
Steven M. Ballou ◽  
Jennifer R. Mandel




Oecologia ◽  
2015 ◽  
Vol 180 (2) ◽  
pp. 507-517 ◽  
Author(s):  
Tim Engelkes ◽  
Annelein Meisner ◽  
Elly Morriën ◽  
Olga Kostenko ◽  
Wim H. Van der Putten ◽  
...  


Limnology ◽  
2021 ◽  
Author(s):  
Viviane Caetano Firmino ◽  
Leandro Schlemmer Brasil ◽  
Renato Tavares Martins ◽  
Raphael Ligeiro ◽  
Alan Tonin ◽  
...  


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 471
Author(s):  
Angelica M. Reddy ◽  
Paul D. Pratt ◽  
Brenda J. Grewell ◽  
Nathan E. Harms ◽  
Ximena Cibils-Stewart ◽  
...  

Exotic water primroses (Ludwigia spp.) are aggressive invaders in aquatic ecosystems worldwide. To date, management of exotic Ludwigia spp. has been limited to physical and chemical control methods. Biological control provides an alternative approach for the management of invasive Ludwigia spp. but little is known regarding the natural enemies of these exotic plants. Herein the biology and host range of Lysathia flavipes (Boheman), a herbivorous beetle associated with Ludwigia spp. in Argentina and Uruguay, was studied to determine its suitability as a biocontrol agent for multiple closely related target weeds in the USA. The beetle matures from egg to adult in 19.9 ± 1.4 days at 25 °C; females lived 86.3 ± 35.6 days and laid 1510.6 ± 543.4 eggs over their lifespans. No-choice development and oviposition tests were conducted using four Ludwigia species and seven native plant species. Lysathia flavipes showed little discrimination between plant species: larvae aggressively fed and completed development, and the resulting females (F1 generation) oviposited viable eggs on most plant species regardless of origin. These results indicate that L. flavipes is not sufficiently host-specific for further consideration as a biocontrol agent of exotic Ludwigia spp. in the USA and further testing is not warranted.



Sign in / Sign up

Export Citation Format

Share Document