wall ingrowth
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Xiaoyang Wei ◽  
Yuan Huang ◽  
David A Collings ◽  
David W McCurdy

In Arabidopsis, polarized deposition of wall ingrowths in phloem parenchyma (PP) transfer cells (TCs) occurs adjacent to cells of the sieve element/companion cell (SE/CC) complex. However, the spatial relationships between these different cell types in minor veins, where phloem loading occurs, are poorly understood. PP TC development and wall ingrowth localization were compared to other phloem cells in leaves of Col-0 and the transgenic lines AtSUC2::AtSTP9-GFP and AtSWEET11::AtSWEET11-GFP that identify CCs and PP respectively. The development of PP TCs in minor veins, indicated by deposition of wall ingrowths, proceeded basipetally in leaves. However, not all PP develop ingrowths and higher levels of wall ingrowth deposition occur in abaxial- compared to adaxial-positioned PP TCs. Furthermore, the deposition of wall ingrowths was exclusively initiated on and preferentially covered the PP TC/SE interface, rather than the PP TC/CC interface, and only occurred in PP cells that were adjacent to SEs. Collectively, these results demonstrate the dominant impact of SEs on wall ingrowth deposition in PP TCs and suggest the existence of two sub-types of PP cells in leaf minor veins. Compared to PP cells, PP TCs showed more abundant accumulation of AtSWEET11-GFP, indicating functional differences in phloem loading between PP and PP TCs.


2021 ◽  
Author(s):  
Debamalya Chatterjee ◽  
Kameron Wittmeyer ◽  
Tzuu-fen Lee ◽  
Jin Cui ◽  
Neela H Yennawar ◽  
...  

Abstract Maize (Zea mays L.) Ufo1-1 is a spontaneous dominant mutation of the unstable factor for orange1 (ufo1). We recently cloned ufo1, which is a Poaceae specific gene expressed solely during seed development in maize. Here we have characterized Ufo1-1 and a loss-of-function Ds insertion allele (ufo1-Dsg) to decipher the role of ufo1 in maize. We found that both ufo1 mutant alleles impact sugars and hormones, and have defects in the basal endosperm transfer layer (BETL) and adjacent cell types. The Ufo1-1 BETL had reduced cell elongation and cell wall ingrowth, resulting in cuboidal shaped transfer cells. In contrast, the ufo1-Dsg BETL cells showed a reduced overall size with abnormal wall ingrowth. Expression analysis identified the impact of ufo1 on several genes essential for BETL development. The overexpression of Ufo1-1 in various tissues leads to ectopic phenotypes, including abnormal cell organization and stomata subsidiary cell defects. Interestingly, pericarp and leaf transcriptomes also showed that as compared to wild type, Ufo1-1 had ectopic expression of endosperm development-specific genes. This study shows that Ufo1-1 impacts the expression patterns of a wide range of genes involved in various developmental processes.


2020 ◽  
Vol 12 (4) ◽  
pp. 852-868
Author(s):  
S. RAVI SHANKAR ◽  
P. DAYANANDAN

Anatomical and histochemical studies of ovary and caryopsis of sorghum reveal the importance of the chalazal complex in transporting nutrients from maternal sources to the filial diploid embryo and triploid endosperm. The presence of starch, protein, lipid, Ca, K, Mg, and Fe in various tissues at different stages of development can be revealed by a variety of histochemical techniques. Vascular supply ends at the base of the ovary and transport occurs through vascular parenchyma, pigment strand and nucellar projection where symplastic continuity is broken. Nutrients unloaded into an apoplastic placental sac then enter the endosperm and embryo through the aleurone transfer cells. The later possess characteristic wall ingrowth. The single layer of aleurone surrounding the endosperm may also help in transport during later stages of grain-filling. Grain-filling in C4 sorghum is compared with other C4 and C3 grasses showing the variety of strategies evolved to transport nutrients into filial tissues. Standardization of terminologies to describe the tissues of the crease region will help in further research and communication.


2020 ◽  
Vol 71 (16) ◽  
pp. 4617-4620 ◽  
Author(s):  
Tyler J McCubbin ◽  
David M Braun

This article comments on: Wei X, Nguyen ST, Collings DA, McCurdy DW. 2020. Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity. Journal of Experimental Botany 71, 4690–4702.


Author(s):  
Yan Liao ◽  
Solenne Ithurbide ◽  
Christian Evenhuis ◽  
Jan Löwe ◽  
Iain G. Duggin

The tubulin homolog FtsZ assembles a cytokinetic ring in bacteria and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, of previously unclear functions. Here we show that Haloferax volcanii cannot divide properly without either or both, but DNA replication continues, and cells proliferate in alternative ways via remarkable envelope plasticity. FtsZ1 and FtsZ2 co-localize to form the dynamic division ring. However, FtsZ1 can assemble rings independently of FtsZ2, and stabilizes FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast to the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.


2020 ◽  
Vol 71 (16) ◽  
pp. 4690-4702 ◽  
Author(s):  
Xiaoyang Wei ◽  
Suong T T Nguyen ◽  
David A Collings ◽  
David W McCurdy

Abstract In Arabidopsis thaliana, phloem parenchyma transfer cells (PPTCs) occur in leaf minor veins and play a pivotal role in phloem loading. Wall ingrowth formation in PPTCs is induced by the phloem loading activity of these cells, which is regulated by sucrose (Suc). The effects of endogenous versus exogenous Suc on wall ingrowth deposition, however, differ. Elevating endogenous Suc levels by increased light enhanced wall ingrowth formation, whereas lowering endogenous Suc levels by dark treatment or genetically in ch-1 resulted in lower levels of deposition. In contrast, exogenously applied Suc, or Suc derived from other organs, repressed wall ingrowth deposition. Analysis of pAtSUC2::GFP plants, used as a marker for phloem loading status, suggested that wall ingrowth formation is correlated with phloem loading activity. Gene expression analysis revealed that exogenous Suc down-regulated expression of AtSWEET11 and 12, whereas endogenous Suc up-regulated AtSWEET11 expression. Analysis of a TREHALOSE 6-PHOSPHATE (T6P) SYNTHASE overexpression line and the hexokinase (HXK)-null mutant, gin2-1, suggested that Suc signalling of wall ingrowth formation is independent of T6P and HXK. Collectively, these results are consistent with the conclusion that Suc regulates wall ingrowth formation via affecting Suc exporting activity in PPTCs.


2017 ◽  
Vol 68 (17) ◽  
pp. 4749-4764 ◽  
Author(s):  
Hui-Ming Zhang ◽  
Kim Colyvas ◽  
John W Patrick ◽  
Christina E Offler

Sign in / Sign up

Export Citation Format

Share Document