Peptide Nucleic Acid Monomers: A Convenient and Efficient Synthetic Approach to Fmoc/Boc Monomers

2012 ◽  
Vol 65 (5) ◽  
pp. 539 ◽  
Author(s):  
Elisse C. Browne ◽  
Steven J. Langford ◽  
Belinda M. Abbott

A convenient and cost-effective method for the synthesis of Fmoc/Boc-protected peptide nucleic acid monomers is described. The Fmoc/Boc strategy was developed in order to eliminate the solubility issues during peptide nucleic acid solid-phase synthesis, in particular that of the cytosine monomer, that occurred when using the commercialized Bhoc chemistry approach.

2013 ◽  
Vol 815 ◽  
pp. 305-311 ◽  
Author(s):  
Hui Yong Zhang

Oligonucleotides are essential components of many applications in molecular biology. The synthesis chemistry is robust and commercial oligonucleotide synthesizers have taken advantage of the chemistry to provide oligonucleotides of high quality and purity. This paper established nucleic acid synthesis platform to carry out the synthesis of the labeled nucleic acid probes based on the DNA synthesizer and solid-phase synthesis technology. We chose to study the automated synthesis starting from DMT protected FAM labeled amidite attached to controlled pore glass (CPG) support and the standard trityl-off oligonucleotide synthesis cycle was performed, yielding the solid-supported oligonucleotide. The reported automated solid-phase oligonucleotide synthesis procedure successfully employs the common iterative synthesis, deblocking, activation, coupling, capping, oxidation, and isolation steps in standard oligonucleotide synthesis. The automated synthetic approach can also be applied to oligonucleotides of different length, composition of nucleotide, demonstrating the universality of the method. Moreover, the synthesis involved the use of commercially available, safe, stable, and inexpensive reagents, particularly advantageous and attractive for their use in automated solid-phase synthesis. The synthesis allows custom tailoring of their structure to the requirements of biological assays within hours, as opposed to traditional approaches that require weeks or months of work in the laboratory. Therefore it will become much easier to investigate biological interactions and optimize for objectives such as the receptor mediated targeting of oligonucleotides.


2006 ◽  
Vol 17 (2) ◽  
pp. 551-558 ◽  
Author(s):  
Baghavathy S. Balaji ◽  
Fabio Gallazzi ◽  
Fang Jia ◽  
Michael R. Lewis

2011 ◽  
Vol 47 (48) ◽  
pp. 12774 ◽  
Author(s):  
Aleksandra Liberska ◽  
Annamaria Lilienkampf ◽  
Asier Unciti-Broceta ◽  
Mark Bradley

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7012
Author(s):  
Robert Wodtke ◽  
Jens Pietzsch ◽  
Reik Löser

Polyamines are highly attractive vectors for tumor targeting, particularly with regards to the development of radiolabeled probes for imaging by positron emission (PET) and single-photon emission computed tomography (SPECT). However, the synthesis of selectively functionalized derivatives remains challenging due to the presence of multiple amino groups of similar reactivity. In this work, we established a synthetic methodology for the selective mono-fluorobenz(o)ylation of various biogenic diamines and polyamines as lead compounds for the perspective development of substrate-based radiotracers for targeting polyamine-specific membrane transporters and enzymes such as transglutaminases. For this purpose, the polyamine scaffold was constructed by solid-phase synthesis of the corresponding oxopolyamines and subsequent reduction with BH3/THF. Primary and secondary amino groups were selectively protected using Dde and Boc as protecting groups, respectively, in orientation to previously reported procedures, which enabled the selective introduction of the reporter groups. For example, N1-FBz-spermidine, N4-FBz-spermidine, N8-FBz-spermidine, and N1-FBz-spermine and N4-FBz-spermine (FBz = 4-fluorobenzoyl) were obtained in good yields by this approach. The advantages and disadvantages of this synthetic approach are discussed in detail and its suitability for radiolabeling was demonstrated for the solid-phase synthesis of N1-[18F]FBz-cadaverine.


2019 ◽  
Vol 16 (5) ◽  
pp. 437-446
Author(s):  
Ahmed S. Abdelbaky ◽  
Ivan A. Prokhorov ◽  
Igor P. Smirnov ◽  
Kristina M. Koroleva ◽  
Vitaliy I. Shvets ◽  
...  

One of the major challenges facing modern biochemical and biomedical technologies are finding molecular tools for diagnosis and detection of genetic diseases. In this connection, several classes of oligonucleotides have been developed that can recognize and bind to DNA and RNA with high affinity and sequence selectivity and withstand enzymatic degradation by proteases and nucleases; however, few can traverse the cell membrane on their own. One such promising class of nucleic acid mimics developed in the last two decades which showed good results in vitro, are the peptide nucleic acids (PNAs). New chiral α- and γ-peptide Nucleic Acid (PNA) submonomer with methyl substituents in pseudopeptide backbone were synthesized via Mitsunobu reaction. The α-(R)-/γ-(S)-configuration of the chiral centres will ensure the preorganization of the PNA oligomer into a right-handed helix. The results obtained showed that Boc/Fmoc-submonomer compatible with Boc-protocol PNAs solid-phase synthesis on an MBHA resin. We synthesized simple and efficient α-R-, γ-S-disubstituted PNA submonomer based on L-Ala and D-Ala with the construction of the intermediate pseudopeptide moiety by Mitsunobu reaction for subsequent use in the Boc-Protocol of solid phase PNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document