Colorimetric Detection of Trace Arsenic(III) in Aqueous Solution Using Arsenic Aptamer and Gold Nanoparticles

2014 ◽  
Vol 67 (5) ◽  
pp. 813 ◽  
Author(s):  
Minglei Yu

In this study, trace arsenic(iii) (AsIII) in aqueous solution was detected by applying a classical aptamer-based gold nanoparticles colorimetric sensing strategy. An arsenic aptamer was used as a sensing probe and gold nanoparticles as a colorimetric indicator. In the absence of AsIII, the gold nanoparticles were stabilised by the arsenic aptamer and remained dispersed at high NaCl concentrations, displaying a red solution. Contrarily, in the presence of AsIII, the gold nanoparticles were prone to aggregation, owing to the formation of aptamer–AsIII complex between the arsenic aptamer and AsIII, and thus exhibited a blue solution. By monitoring the colour change, a simple and fast colorimetric assay for AsIII was established with a detection range of 1.26–200 ppb and a detection limit of 1.26 ppb. Because this colorimetric assay only involves common reagents and can be assessed visually, it holds great potential for arsenic(iii) monitoring in environment-related and other applications.

2013 ◽  
Vol 66 (4) ◽  
pp. 485 ◽  
Author(s):  
Lan He ◽  
Yanfang Luo ◽  
Wenting Zhi ◽  
Yuangen Wu ◽  
Pei Zhou

This paper proposes a sensing strategy which employs an aptamer, unmodified gold nanoparticles (AuNP), and hexadecyltrimethylammonium bromide (CTAB) to detect tetracycline (TET) in raw milk. The method is based on the colorimetric assay of aggregating AuNP. In the absence of TET, the CTAB and aptamer form a complex which allows the aggregation of AuNP. In the presence of TET, the TET aptamer is exhausted first due to the formation of aptamer-TET complexes, which prevents assembly of the CTAB–aptamer supramolecule, causing a colour change and no aggregation of AuNP. This mechanism for the detection of TET proved to be sensitive and convenient. The colorimetric assay has a detection limit of 122 nM TET. This sensor has great potential for the sensitive, colorimetric detection of a wide range of molecular analytes.


Biosensors ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 113 ◽  
Author(s):  
Chia-Chen Chang ◽  
Tsz-Lian Hsu ◽  
Chie-Pein Chen ◽  
Chen-Yu Chen

A colorimetric assay was developed for the detection of biothiols, based on the peroxidase-like activity of iodine-capped gold nanoparticles (AuNPs). These AuNPs show a synergetic effect in the form of peroxidase-mimicking activity at the interface of AuNPs, while free AuNPs and iodine alone have weak catalytic properties. Thus, iodine-capped AuNPs possess good intrinsic enzymatic activity and trigger the oxidation of 3,3’,5,5’-tetramethylbenzidine (TMB), leading to a change in color from colorless to yellow. When added to solution, biothiols, such as cysteine, strongly bind to the interface of AuNPs via gold-thiol bonds, inhibiting the catalytic activity of AuNPs, resulting in a decrease in oxidized TMB. Using this strategy, cysteine could be linearly determined, at a wide range of concentrations (0.5 to 20 μM), with a detection limit of 0.5 μM using UV-Vis spectroscopy. This method was applied for the detection of cysteine in diluted human urine.


2016 ◽  
Vol 8 (27) ◽  
pp. 5526-5532 ◽  
Author(s):  
Guo Jian-feng ◽  
Hou Chang-jun ◽  
Yang Mei ◽  
Huo Dan-qun ◽  
Li Jun-jie ◽  
...  

Herein, we developed a simple, sensitive and non-aggregation-based method for the selective colorimetric detection of chromium(vi) ions (Cr(vi)) in an aqueous solution.


2020 ◽  
Vol 12 (24) ◽  
pp. 3145-3150 ◽  
Author(s):  
Xin Yuan ◽  
Benqing Zhou ◽  
Maoquan Li ◽  
Mingwu Shen ◽  
Xiangyang Shi

Poly(γ-glutamic acid)-stabilized gold nanoparticles enable sensitive and selective colorimetric sensing of Cr3+ ions in aqueous solution.


2021 ◽  
Author(s):  
Deepshikha Shahdeo ◽  
Azmat Ali Khan ◽  
Amer M Alanazi ◽  
Yun Suk Huh ◽  
Shruti Shukla ◽  
...  

Abstract Ochratoxin A (OTA) is one of the predominant mycotoxins that contaminate a wide range of food commodities. In the present study, a 36-mer aptamer was used as a molecular recognition element coupled with gold nanoparticles (AuNPs) for colorimetric detection of OTA in a microfluidic paper-based analytical device (µPADs). The µPADs consisted of three zones: control, detection, and sample, interconnected by channels. The biophysical characterizations of aptamer conjugated AuNPs were done by UV-vis spectroscopy (UV-vis), dynamic Light Scattering (DLS), and transmission electron microscopy (TEM). The developed colorimetric assay for OTA showed a limit of detection of 242, 545, and 95.69 ng/mL in water, corn, and groundnut, respectively. The HPLC detection method achieved acceptable coefficient in standard curves (r2 = 0.9995), better detection range, and recovery rates in spiked corn and groundnut samples as 43.61 ± 2.18% to 87.10 ± 1.82% and 42.01 ± 1.31% to 86.03 ± 2.64% after multiple sample extractions and cleanup steps. However, the developed µPADs analytical device had the potent ability to rapidly detect OTA without any extraction pre-requirement, derivatization, and cleanup steps, thus illustrating its feasibility in the animal health sector, agricultural, and food industries.


The Analyst ◽  
2019 ◽  
Vol 144 (4) ◽  
pp. 1205-1209 ◽  
Author(s):  
Chi Zhang ◽  
Caiyun Kong ◽  
Qingyun Liu ◽  
Zhengbo Chen

We herein present a simple, low-cost, and ultrasensitive colorimetric sensing strategy for the detection of mercury ions (Hg2+) that takes advantage of the natural pore structure in rose petals to encapsulate gold nanoparticles (AuNPs).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaotian Zhu ◽  
Chang Liu ◽  
Jie Liu

A new colorimetric assay for the detection of sulfide anions with high sensitivity and selectivity is reported, utilizing Au-Hg alloy nanorods (Au-HgNRs) as probe. Au-HgNRs were prepared by modifying gold nanorods (AuNRs) with reducing agent and mercury ions. In an aqueous solution with sulfide anions, the formation of mercuric sulfide due to redox reaction between the amalgams and sulfide anions greatly changed the surface chemistry and morphology of the Au-HgNRs, leading to a red shift of the localized surface plasmon resonance (LSPR) absorption peak, accompanied by a change in colorimetric response. A good linear relationship was obtained between the LSPR peak wavelength shift and concentration of sulfide anion in the range of 1 × 10−5−1 × 10−4 mol/L. The selectivity of this method has been investigated by other anions. The colorimetric sensing system successfully detected sulfide in wastewater from leather industry.


2012 ◽  
Vol 48 (37) ◽  
pp. 4459 ◽  
Author(s):  
Yuangen Wu ◽  
Shenshan Zhan ◽  
Faze Wang ◽  
Lan He ◽  
Wenting Zhi ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4245-4255 ◽  
Author(s):  
Vaibhavkumar N. Mehta ◽  
Suresh Kumar Kailasa

In this study, a colorimetric probe was developed based on malonamide dithiocarbamate functionalized gold nanoparticles (MA–DTC–Au NPs) for the simultaneous colorimetric detection of Cu2+ and Hg2+ ions.


Sign in / Sign up

Export Citation Format

Share Document