Ultrasensitive colorimetric detection of Hg2+ ions based on enhanced catalytic performance of gold amalgam dispersed in channels of rose petals

The Analyst ◽  
2019 ◽  
Vol 144 (4) ◽  
pp. 1205-1209 ◽  
Author(s):  
Chi Zhang ◽  
Caiyun Kong ◽  
Qingyun Liu ◽  
Zhengbo Chen

We herein present a simple, low-cost, and ultrasensitive colorimetric sensing strategy for the detection of mercury ions (Hg2+) that takes advantage of the natural pore structure in rose petals to encapsulate gold nanoparticles (AuNPs).

2019 ◽  
Vol 148 ◽  
pp. 299-305 ◽  
Author(s):  
Ramesh Kataria ◽  
Kunjithapatham Sethuraman ◽  
Devika Vashisht ◽  
Aseem Vashisht ◽  
Surinder Kumar Mehta ◽  
...  

2014 ◽  
Vol 67 (5) ◽  
pp. 813 ◽  
Author(s):  
Minglei Yu

In this study, trace arsenic(iii) (AsIII) in aqueous solution was detected by applying a classical aptamer-based gold nanoparticles colorimetric sensing strategy. An arsenic aptamer was used as a sensing probe and gold nanoparticles as a colorimetric indicator. In the absence of AsIII, the gold nanoparticles were stabilised by the arsenic aptamer and remained dispersed at high NaCl concentrations, displaying a red solution. Contrarily, in the presence of AsIII, the gold nanoparticles were prone to aggregation, owing to the formation of aptamer–AsIII complex between the arsenic aptamer and AsIII, and thus exhibited a blue solution. By monitoring the colour change, a simple and fast colorimetric assay for AsIII was established with a detection range of 1.26–200 ppb and a detection limit of 1.26 ppb. Because this colorimetric assay only involves common reagents and can be assessed visually, it holds great potential for arsenic(iii) monitoring in environment-related and other applications.


2014 ◽  
Vol 6 (7) ◽  
pp. 2031-2033 ◽  
Author(s):  
Li-Qing Zheng ◽  
Xiao-Dong Yu ◽  
Jing-Juan Xu ◽  
Hong-Yuan Chen

Based on the hydrophobic effect inducing the aggregation of Au NPs, a rapid and low-cost colorimetric method for detection of quaternary ammonium surfactants using citrate-stabilized AuNPs was developed.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Sidhureddy Boopathi ◽  
Shanmugam Senthilkumar ◽  
Kanala Lakshminarasimha Phani

In this work, we reported for the first time, a facile and one step synthesis of gold nanoparticles from HAuCl4, employing tetraphenylborate as the reducing agent. The synthesis is not only facile but also yields “dumb-bell-shaped”particles. This shape appears to arise from a possible emulsion of the products of oxidation/decomposition of tetraphenylborate by HAuCl4, surrounding the particle. The size and shape of the AuNPs were characterized by Transmission electron microscopy (TEM) and UV-visible Spectroscopy. Interestingly, the addition of polyvinylpyrrolidone (PVP) during the synthesis was found to enhance the stability of the nanoparticle dispersion. The particles synthesized under these conditions assume “spherical” shape with the appearance of only transverse surface plasmon resonance band. The highlight of the observations is that the gold nanoparticles synthesized using tetraphenylborate as reducing agent and PVP as stabilizer are highly stable in alkaline medium, in contrast to the synthesis wherein borohydride is used as reducing agent. The AuNPs synthesized using tetraphenylborate and PVP show their mercury sensing behavior only in the alkaline medium. The color of the nanoparticle dispersion undergoes distinct color change from pink to blue with the addition of mercury ions. They also show dramatic selectivity to mercury ions in presence of other interfering ions, Pb2+, Zn2+and Ca2+.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2679 ◽  
Author(s):  
Zheng-Jun Xie ◽  
Xian-Yu Bao ◽  
Chi-Fang Peng

A new colorimetric detection of methylmercury (CH3Hg+) was developed, which was based on the surface deposition of Hg enhancing the catalytic activity of gold nanoparticles (AuNPs). The AuNPs were functionalized with a specific DNA strand (HT7) recognizing CH3Hg+, which was used to capture and separate CH3Hg+ by centrifugation. It was found that the CH3Hg+ reduction resulted in the deposition of Hg onto the surface of AuNPs. As a result, the catalytic activity of the AuNPs toward the chromogenic reaction of 3,3,5,5-tetramethylbenzidine (TMB)-H2O2 was remarkably enhanced. Under optimal conditions, a limit of detection of 5.0 nM was obtained for CH3Hg+ with a linear range of 10–200 nM. We demonstrated that the colorimetric method was fairly simple with a low cost and can be conveniently applied to CH3Hg+ detection in environmental samples.


2014 ◽  
Vol 182 (3-4) ◽  
pp. 611-616 ◽  
Author(s):  
Zhengbo Chen ◽  
Chenmeng Zhang ◽  
Yuan Tan ◽  
Tianhui Zhou ◽  
He Ma ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1423
Author(s):  
Zhen Gu ◽  
Jing-Jing Luo ◽  
Le-Wei Ding ◽  
Bing-Yong Yan ◽  
Jia-Le Zhou ◽  
...  

Digital microfluidic (DMF) has been a unique tool for manipulating micro-droplets with high flexibility and accuracy. To extend the application of DMF for automatic and in-site detection, it is promising to introduce colorimetric sensing based on gold nanoparticles (AuNPs), which have advantages including high sensitivity, label-free, biocompatibility, and easy surface modification. However, there is still a lack of studies for investigating the movement and stability of AuNPs for in-site detection on the electrowetting-based digital microfluidics. Herein, to demonstrate the ability of DMF for colorimetric sensing with AuNPs, we investigated the electrowetting property of the AuNPs droplets on the hydrophobic interface of the DMF chip and examined the stability of the AuNPs on DMF as well as the influence of evaporation to the colorimetric sensing. As a result, we found that the electrowetting of AuNPs fits to a modified Young–Lippmann equation, which suggests that a higher voltage is required to actuate AuNPs droplets compared with actuating water droplets. Moreover, the stability of AuNPs was maintained during the processing of electrowetting. We also proved that the evaporation of droplets has a limited influence on the detections that last several minutes. Finally, a model experiment for the detection of Hg2+ was carried out with similar results to the detections in bulk solution. The proposed method can be further extended to a wide range of AuNPs-based detection for label-free, automatic, and low-cost detection of small molecules, biomarkers, and metal ions.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4763 ◽  
Author(s):  
Brabu Balusamy ◽  
Anitha Senthamizhan ◽  
Tamer Uyar

Mercury is considered the most hazardous pollutant of aquatic resources; it exerts numerous adverse effects on environmental and human health. To date, significant progress has been made in employing a variety of nanomaterials for the colorimetric detection of mercury ions. Electrospun nanofibers exhibit several beneficial features, including a large surface area, porous nature, and easy functionalization; thus, providing several opportunities to encapsulate a variety of functional materials for sensing applications with enhanced sensitivity and selectivity, and a fast response. In this review, several examples of electrospun nanofiber-based sensing platforms devised by utilizing the two foremost approaches, namely, direct incorporation and surface decoration envisioned for detection of mercury ions are provided. We believe these examples provide sufficient evidence for the potential use and progress of electrospun nanofibers toward colorimetric sensing of mercury ions. Furthermore, the summary of the review is focused on providing an insight into the future directions of designing electrospun nanofiber-based, metal ion colorimetric sensors for practical applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4245-4255 ◽  
Author(s):  
Vaibhavkumar N. Mehta ◽  
Suresh Kumar Kailasa

In this study, a colorimetric probe was developed based on malonamide dithiocarbamate functionalized gold nanoparticles (MA–DTC–Au NPs) for the simultaneous colorimetric detection of Cu2+ and Hg2+ ions.


2020 ◽  
Vol 40 (1) ◽  
pp. 1-11
Author(s):  
Ning Xu ◽  
Shuang Jin ◽  
Li Wang

Abstract With the progress of analysis technology and nanotechnology, colorimetric detection has become one of the research hotspots in the field of analytical chemistry. Compared with traditional detection methods, the colorimetric method has many advantages, such as high sensitivity, good selectivity, convenience and fast, as well as low cost. In recent years, metal nanoparticles have been introduced into colorimetry, making the research and application of colorimetry develop rapidly. In this work, we summarize the usual colorimetric detection methods based on metal nanoparticles-based nanozymes and their applications in the last five years. We hope that this work will help readers understand the mechanism and practical application value of nanozyme-based colorimetric biosensors. Meanwhile, this work may give some hints and references for future colorimetric detection research to promote the application and development of nanozyme-based colorimetry in biomedical and environmental analysis.


Sign in / Sign up

Export Citation Format

Share Document