Functionalisation of Imidazolin-2-imine to Corresponding Phosphinamine, Chalcogenide (O, S, Se, Te), and Borane Compounds

2015 ◽  
Vol 68 (1) ◽  
pp. 127 ◽  
Author(s):  
Kishor Naktode ◽  
Sayak Das Gupta ◽  
Abhinanda Kundu ◽  
Salil K. Jana ◽  
Hari Pada Nayek ◽  
...  

1,3-Di-tert-butyl-imidazolin-2-ylidine-1,1-diphenylphosphinamine (2) was prepared from 1,3-di-tert-butyl-imidazolin-2-imine (1) and chlorodiphenylphosphine. Compound 2 was treated further with elemental sulfur, selenium, and tellurium to afford the corresponding chalcogenide derivatives, 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinothioicamide (4), 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinoselenoicamide (5), and 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinotelluroicamide (6) in good yield. 1,3-Di-tert-butyl-imidazolin-2-ylidine-P,P-diphenylphosphinicamide (3) was obtained by dissolving compound 2 in hydrochloric acid solution in THF. The corresponding borane adduct, 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinaminoborane (7) was isolated by the reaction of compound 2 and sodium borohydride in good yield. The molecular structures of compounds 2 and 4–7 were established by X-ray diffraction analyses. To analyse the electronic structure of chalcogenides of imidazolin-2-imine ligands, the protonation energies of the oxygen, sulfur, and selenide derivative of ligand 2 were calculated by means of density functional theory. Finally, the charge distribution in compounds 3, 4, and 5 were determined using natural bond orbital analysis.

2015 ◽  
Vol 11 ◽  
pp. 2179-2188 ◽  
Author(s):  
Yury A Sayapin ◽  
Inna O Tupaeva ◽  
Alexandra A Kolodina ◽  
Eugeny A Gusakov ◽  
Vitaly N Komissarov ◽  
...  

A series of derivatives of 2-hetaryl-1,3-tropolone (β-tropolone) was prepared by the acid-catalyzed reaction of 2-methylbenzoxazoles, 2-methylbenzothiazoles and 2,3,3-trimethylindoline with 3,4,5,6-tetrachloro-1,2-benzoquinone. The molecular structures of the three representative compounds were determined by X-ray crystallography. In crystal and (as shown by the DFT PBE0/6-311+G** calculations) in solution, 2-hetaryl-4,5,6,7-tetrachloro- and 2-hetaryl-5,6,7-trichloro-1,3-tropolones exist in the NH-tautomeric form with a strong resonance-assisted intramolecular N–H···O hydrogen bond. The mechanism of the formation of 1,3-tropolones in the reaction of methylene-active five-membered heterocycles with o-chloranil in acetic acid solution has been studied using density functional theory (DFT) methods. The reaction of 2-(2-benzoxa(thia)zolyl)-5,6,7-trichloro(4,5,6,7-tetrachloro)-1,3-tropolones with alcohols leads to the contraction of the seven-membered tropone ring with the formation of 2-(2-benzoxa(thia)zolyl)-6-alkoxycarbonylphenols. The molecular structure of 2-(2-ethoxycarbonyl-6-hydroxy-3,4,5-trichlorophenyl)benzoxazole has been determined by X-ray diffraction. 2-(2-Benzoxa(thia)zolyl)-6-alkoxycarbonylphenols display intense green fluorescence with anomalous Stokes shifts caused by the excited state intramolecular proton transfer (ESIPT) effects.


2018 ◽  
Vol 73 (8) ◽  
pp. 577-582
Author(s):  
Monika Olesiejuk ◽  
Agnieszka Kudelko ◽  
Katarzyna Gajda ◽  
Błażej Dziuk ◽  
Krzysztof Ejsmont

AbstractThe crystal and molecular structures of 2-benzoyl-5-phenylpyrazolidin-3-one have been characterized by X-ray diffraction along with density functional theory studies. Cinnamic acid chloride was reacted with benzhydrazide, yielding 2-benzoyl-5-phenylpyrazolidin-3-one. This product was formed in the transformation comprising the nucleophilic addition of benzhydrazide to the styryl fragment of the α,β-unsaturated arrangement and subsequent cyclization. The molecule contains two benzene rings and one five-membered heterocyclic ring with an N–N single bond. The five-membered ring is composed of three atoms of sp3 hybridization and two atoms of sp2 hybridization, which cause the flattening of the heterocyclic ring. The Harmonic Oscillator Model of Aromaticity and Nucleus-Independent Chemical Shift indexes, calculated for the benzene rings, demonstrate that there are no substantial interactions between the regions of π-electron delocalization in the molecule. In the crystal structure, there are N–H···O hydrogen bonds that link the molecules along the crystallographic c axis and weak intermolecular C–H···O hydrogen bonds.


2020 ◽  
Vol 75 (3) ◽  
pp. 287-293
Author(s):  
Samireh Hosseini ◽  
Zahra Mardani ◽  
Keyvan Moeini ◽  
Cameron Carpenter-Warren ◽  
Alexandra M.Z. Slawin ◽  
...  

AbstractIn this work, a pyrimidine-based ligand, N′-(amino(pyrimidin-2-yl)methylene)pyrimidine-2-carbohydrazonamide hydrate (APPH · H2O), and its binuclear complex of cadmium, [Cd(μ-APPH)Br]2, 1, were prepared and identified by elemental analysis, FT-IR, 1H NMR spectroscopy as well as single-crystal X-ray diffraction. X-ray structure analysis of 1 revealed octahedrally coordinated cadmium centers with a CdN4Br2 environment containing two bridging APPH ligands; each APPH ligand acts as an N4-donor (N2-donor toward each cadmium atom) and forms two five-membered chelate rings that are approximately perpendicular to each other. In the network of 1, the N–H · · · Br hydrogen bonds form motifs such as ${\rm{R}}_{\rm{2}}^{\rm{2}}(12,{\rm{ }}14),{\rm{ R}}_{\rm{6}}^{\rm{6}}(24,{\rm{ }}26,{\rm{ }} \ldots ,{\rm{ }}46).$ The crystal network is further stabilized by π-π stacking interactions between pyrimidine rings. The optimized structures of the ligand and complex were investigated along with their charge distribution patterns by density functional theory and natural bond orbital analysis, respectively.


2011 ◽  
Vol 67 (5) ◽  
pp. 425-436 ◽  
Author(s):  
A. A. Rykounov ◽  
A. I. Stash ◽  
V. V. Zhurov ◽  
E. A. Zhurova ◽  
A. A. Pinkerton ◽  
...  

The combined study of electron-density features in three substituted hydropyrimidines of the Biginelli compound family has been fulfilled. Results of the low-temperature X-ray diffraction measurements and density functional theory (DFT) B3LYP/6-311++G** calculations of these compounds are described. The experimentally derived atomic and bonding characteristics determined within the quantum-topological theory of atoms in molecules and crystals (QTAIMC) were demonstrated to be fully transferable within chemically similar structures such as the Biginelli compounds. However, for certain covalent bonds they differ significantly from the theoretical results because of insufficient flexibility of the atom-centered multipole electron density model. It was concluded that currently analysis of the theoretical electron density provides a more reliable basis for the determination of the transferability of QTAIMC descriptors for molecular structures. Empirical corrections making the experimentally derived QTAIMC bond descriptors more transferable are proposed.


2018 ◽  
Vol 73 (5) ◽  
pp. 305-309
Author(s):  
Bartłomiej Bereska ◽  
Krystyna Czaja ◽  
Błażej Dziuk ◽  
Bartosz Zarychta ◽  
Krzysztof Ejsmont ◽  
...  

AbstractThe crystal and molecular structures of two polymorphs of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine have been characterized by X-ray diffraction along with density functional theory (DFT) studies. The molecules differ from each other by conformation. N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine has been synthesized by cyanoethylation of ethylenediamine. Cyanoethylation of vicinal diamines is important for the synthesis of hyperbranched polymeric materials applied as catalysts, surfactants and encapsulating agents in drug delivery systems. The molecular geometry of N,N,N′,N′-tetracyanoethyl-1,2-ethylenediamine is similar to that of homologous compounds. DFT calculations were performed to analyze the differences in the molecular geometry of the studied compounds in a crystalline state and for an isolated molecule.


2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


2020 ◽  
Vol 235 (8-9) ◽  
pp. 311-317
Author(s):  
Stephan G. Jantz ◽  
Florian Pielnhofer ◽  
Henning A. Höppe

Abstract${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ was discovered as a frequently observed side phase during our investigation on lead tungstates. Its crystal structure was solved by single-crystal X-ray diffraction ($P{2}_{1}/n$, $a=7.4379\left(2\right)$ Å, $b=12.1115\left(4\right)$ Å, $c=10.6171\left(3\right)$ Å, $\beta =90.6847\left(8\right)$°, $Z=4$, ${R}_{\text{int}}=0.038$, ${R}_{1}=0.020$, $\omega {R}_{2}=0.029$, 4188 data, 128 param.) and is isotypic with ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{Te}}_{6}\right]$. ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ comprises a layered structure built up by non-condensed [WO6]${}^{6-}$ octahedra and ${\left[{\text{O}}_{4}{\text{Pb}}_{10}\right]}^{12+}$ oligomers. The compound was characterised by spectroscopic measurements (Infrared (IR), Raman and Ultraviolet–visible (UV/Vis) spectra) as well as quantum chemical and electrostatic calculations (density functional theory (DFT), MAPLE) yielding a band gap of 2.9 eV fitting well with the optical one of 2.8 eV. An estimation of the refractive index based on the Gladstone-Dale relationship yielded $n\approx 2.31$. Furthermore first results of the thermal analysis are presented.


Inorganics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 28
Author(s):  
Kriti Pathak ◽  
Chandan Nandi ◽  
Jean-François Halet ◽  
Sundargopal Ghosh

Synthesis, isolation, and structural characterization of unique metal rich diamagnetic cobaltaborane clusters are reported. They were obtained from reactions of monoborane as well as modified borohydride reagents with cobalt sources. For example, the reaction of [Cp*CoCl]2 with [LiBH4·THF] and subsequent photolysis with excess [BH3·THF] (THF = tetrahydrofuran) at room temperature afforded the 11-vertex tricobaltaborane nido-[(Cp*Co)3B8H10] (1, Cp* = η5-C5Me5). The reaction of Li[BH2S3] with the dicobaltaoctaborane(12) [(Cp*Co)2B6H10] yielded the 10-vertex nido-2,4-[(Cp*Co)2B8H12] cluster (2), extending the library of dicobaltadecaborane(14) analogues. Although cluster 1 adopts a classical 11-vertex-nido-geometry with one cobalt center and four boron atoms forming the open pentagonal face, it disobeys the Polyhedral Skeletal Electron Pair Theory (PSEPT). Compound 2 adopts a perfectly symmetrical 10-vertex-nido framework with a plane of symmetry bisecting the basal boron plane resulting in two {CoB3} units bridged at the base by two boron atoms and possesses the expected electron count. Both compounds were characterized in solution by multinuclear NMR and IR spectroscopies and by mass spectrometry. Single-crystal X-ray diffraction analyses confirmed the structures of the compounds. Additionally, density functional theory (DFT) calculations were performed in order to study and interpret the nature of bonding and electronic structures of these complexes.


Sign in / Sign up

Export Citation Format

Share Document