scholarly journals Microfluidic Radiosynthesis of the Muscarinic M2 Imaging Agent [18F]FP-TZTP

2018 ◽  
Vol 71 (10) ◽  
pp. 811 ◽  
Author(s):  
Lidia Matesic ◽  
Ivan Greguric ◽  
Giancarlo Pascali

3-(4-(3-[18F]Fluoropropylthio)-1,2,5-thiadiazol-3-yl)-1-methyl-1,2,5,6-tetrahydropyridine ([18F]FP-TZTP) is a selective 18F-radiotracer for the muscarinic acetylcholine receptor subtype M2, which can be used to perform positron emission tomography (PET) scans on patients with neurological disorders such as Alzheimer’s disease. [18F]FP-TZTP was produced using continuous-flow microfluidics, a technique that uses reduced amounts of chemical reagents, shorter reaction times and in general, results in higher radiochemical yields compared to currently used techniques. The optimal 18F-radiolabelling conditions consisted of a total flow rate of 40 µL min−1 and 190°C, which produced [18F]FP-TZTP in 26 ± 10 % radiochemical yield with a molar activity of 182 ± 65 GBq µmol−1 and >99 % radiochemical purity.

2021 ◽  
Vol 1 ◽  
Author(s):  
Anton Lindberg ◽  
Amanda J. Boyle ◽  
Junchao Tong ◽  
Michael B. Harkness ◽  
Armando Garcia ◽  
...  

Ibrutinib is a first-generation Bruton's tyrosine kinase (BTK) inhibitor that has shown efficacy in autoimmune diseases and has consequently been developed as a positron emission tomography (PET) radiotracer. Herein, we report the automated radiosynthesis of [11C]ibrutinib through 11C-carbonylation of the acrylamide functional group, by reaction of the secondary amine precursor with [11C]CO, iodoethylene, and palladium–NiXantphos. [11C]Ibrutinib was reliably formulated in radiochemical yields of 5.4% ± 2.5% (non-decay corrected; n = 9, relative to starting [11C]CO2), radiochemical purity >99%, and molar activity of 58.8 ± 30.8 GBq/μmol (1.55 ± 0.83 Ci/μmol). Preliminary PET/magnetic resonance imaging with [11C]ibrutinib in experimental autoimmune encephalomyelitis (EAE) mice showed a 49% higher radioactivity accumulation in the spinal cord of mice with EAE scores of 2.5 vs. sham mice.


2017 ◽  
Vol 13 ◽  
pp. 2922-2927 ◽  
Author(s):  
Thomas Lee Collier ◽  
Steven H Liang ◽  
J John Mann ◽  
Neil Vasdev ◽  
J S Dileep Kumar

Continuous-flow microfluidics has shown increased applications in radiochemistry over the last decade, particularly for both pre-clinical and clinical production of fluorine-18 labeled radiotracers. The main advantages of microfluidics are the reduction in reaction times and consumption of reagents that often result in increased radiochemical yields and rapid optimization of reaction parameters for 18F-labeling. In this paper, we report on the two-step microfluidic radiosynthesis of the high affinity partial agonist of the serotonin 1A receptor, [18F]FEMPT (pK i = 9. 79; K i = 0.16 nM) by microfluidic radiochemistry. [18F]FEMPT was obtained in ≈7% isolated radiochemical yield and in >98% radiochemical and chemical purity. The molar activity of the final product was determined to be >148 GBq/µmol (>4 Ci/µmol).


Author(s):  
Richard Edwards ◽  
Hannah E. Greenwood ◽  
Graeme McRobbie ◽  
Imtiaz Khan ◽  
Timothy H. Witney

Abstract Purpose (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. Procedures An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. Results The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/μmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. Conclusions We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation.


2020 ◽  
Author(s):  
Christine Vala ◽  
Céline Mothes ◽  
Gabrielle Chicheri ◽  
Pauline Magadur ◽  
Gilles Viot ◽  
...  

Abstract Background:Fluorine labelled 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2b-carboxylic acid methyl ester ([18F]LBT999) is a selective radioligand for in vivoneuroimaging and quantification of the dopamine transporter by Positron Emission Tomography (PET). [18F]LBT999 has been produced on a TRACERlabFXFN for the Phase I study but forPhase III and a potent industrial production transfer, production has been also implemented on AllinOne (AIO)system requiring single use cassette. Both productions methods are reported herein. Results:Automation of [18F]LBT999radiosynthesis on FXFN was carried out in 35% yield (decay-corrected) in 65 min (n=16), with a radiochemical purity higher than 99 %and a molar activity of 158GBq/µmol at the end of synthesis. The transfer on the AIO platform followed by optimizations allowed the production of [18F]LBT999 in 32.7% yield (decay-corrected) within 48 min (n=5), with a radiochemical purity better than 98% and a molar activity in average higher to 154 GBq/µmol at the end of synthesis. Quality controls of both methods met the specification for clinical application.Conclusion:Both modules allow efficient and reproducible radiosynthesis of [18F]LBT999 with good radiochemical yields and a reasonable synthesis time.The developments made on AIO as its ability to meet pharmaceutical criteria and to more easily comply with GMP requirements make this approach as the best for a potent industrial production of the [18F]LBT999 and a future wider use.


Author(s):  
Qinheng Zheng ◽  
Hongtao Xu ◽  
Hua Wang ◽  
Wen-Ge Han Du ◽  
Nan Wang ◽  
...  

The lack of simple, efficient [<sup>18</sup>F]fluorination processes and new target-specific organofluorine probes remains the major challenge of fluorine-18-based positron emission tomography (PET). We report here a fast isotopic exchange method for the radiosynthesis of aryl [<sup>18</sup>F]fluorosulfate based PET agents enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully-automated <sup>18</sup>F-radiolabeling of twenty-five structurally diverse aryl fluorosulfates with excellent radiochemical yield (83–100%) and high molar activity (up to 281 GBq µmol<sup>–1</sup>) at room temperature in 30 seconds. The purification of radiotracers requires no time-consuming high-performance liquid chromatography (HPLC), but rather a simple cartridge filtration. The utility of aryl [<sup>18</sup>F]fluorosulfate is demonstrated by the <i>in vivo</i> tumor imaging by targeting poly(ADP-ribose) polymerase 1 (PARP1).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nashaat Turkman ◽  
Daxing Liu ◽  
Isabella Pirola

AbstractSmall molecules that contain the (TFMO) moiety were reported to specifically inhibit the class-IIa histone deacetylases (HDACs), an important target in cancer and the disorders of the central nervous system (CNS). However, radiolabeling methods to incorporate the [18F]fluoride into the TFMO moiety are lacking. Herein, we report a novel late-stage incorporation of [18F]fluoride into the TFMO moiety in a single radiochemical step. In this approach the bromodifluoromethyl-1,2,4-oxadiazole was converted into [18F]TFMO via no-carrier-added bromine-[18F]fluoride exchange in a single step, thus producing the PET tracers with acceptable radiochemical yield (3–5%), high radiochemical purity (> 98%) and moderate molar activity of 0.33–0.49 GBq/umol (8.9–13.4 mCi/umol). We validated the utility of the novel radiochemical design by the radiosynthesis of [18F]TMP195, which is a known TFMO containing potent inhibitor of class-IIa HDACs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1097
Author(s):  
Andras Polyak ◽  
Jens P. Bankstahl ◽  
Karen F. W. Besecke ◽  
Constantin Hozsa ◽  
Wiebke Triebert ◽  
...  

In this work, a method for the preparation of the highly lipophilic labeling synthon [89Zr]Zr(oxinate)4 was optimized for the radiolabeling of liposomes and human induced pluripotent stem cells (hiPSCs). The aim was to establish a robust and reliable labeling protocol for enabling up to one week positron emission tomography (PET) tracing of lipid-based nanomedicines and transplanted or injected cells, respectively. [89Zr]Zr(oxinate)4 was prepared from oxine (8-hydroxyquinoline) and [89Zr]Zr(OH)2(C2O4). Earlier introduced liquid–liquid extraction methods were simplified by the optimization of buffering, pH, temperature and reaction times. For quality control, thin-layer chromatography (TLC), size-exclusion chromatography (SEC) and centrifugation were employed. Subsequently, the 89Zr-complex was incorporated into liposome formulations. PET/CT imaging of 89Zr-labeled liposomes was performed in healthy mice. Cell labeling was accomplished in PBS using suspensions of 3 × 106 hiPSCs, each. [89Zr]Zr(oxinate)4 was synthesized in very high radiochemical yields of 98.7% (96.8% ± 2.8%). Similarly, high internalization rates (≥90%) of [89Zr]Zr(oxinate)4 into liposomes were obtained over an 18 h incubation period. MicroPET and biodistribution studies confirmed the labeled nanocarriers’ in vivo stability. Human iPSCs incorporated the labeling agent within 30 min with ~50% efficiency. Prolonged PET imaging is an ideal tool in the development of lipid-based nanocarriers for drug delivery and cell therapies. To this end, a reliable and reproducible 89Zr radiolabeling method was developed and tested successfully in a model liposome system and in hiPSCs alike.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Valdemar L. Andersen ◽  
Mikkel A. Soerensen ◽  
Johan Hygum Dam ◽  
Niels Langkjaer ◽  
Henrik Petersen ◽  
...  

Abstract Background The radiofluorinated levodopa analogue 6-[18F]F-l-DOPA (3,4-dihydroxy-6-18F-l-phenylalanine) is a commonly employed radiotracer for PET/CT imaging of multiple oncological and neurological indications. An unusually large number of different radiosyntheses have been published to the point where two different Ph. Eur. monographs exist depending on whether the chemistry relies on electrophilic or nucleophilic radiosubstitution of appropriate chemical precursors. For new PET imaging sites wishing to adopt [18F]FDOPA into clinical practice, selecting the appropriate production process may be difficult and dependent on the clinical needs of the site. Methods Data from four years of [18F]FDOPA production at three different clinical sites are collected and compared. These three sites, Aarhus University Hospital (AUH), Odense University Hospital (OUH), and Herlev University Hospital (HUH), produce the radiotracer by different radiosynthetic routes with AUH adopting an electrophilic strategy, while OUH and HUH employ two different nucleophilic approaches. Production failure rates, radiochemical yields, and molar activities are compared across sites and time. Additionally, the clinical use of the radiotracer over the time period considered at the different sites are presented and discussed. Results The electrophilic substitution route suffers from being demanding in terms of cyclotron operation and maintenance. This challenge, however, was found to be compensated by a production failure rate significantly below that of both nucleophilic approaches; a result of simpler chemistry. The five-step nucleophilic approach employed at HUH produces superior radiochemical yields compared to the three-step approach adopted at OUH but suffers from the need for more comprehensive synthesis equipment given the multi-step nature of the procedure, including HPLC purification. While the procedure at OUH furnishes the lowest radiochemical yield of the synthetic routes considered, it produces the highest molar activity. This is of importance across the clinical applications of the tracer discussed here, including dopamine synthesis in striatum of subjects with schizophrenia and congenital hyperinsulinism in infants. Conclusion For most sites either of the two nucleophilic substitution strategies should be favored. However, which of the two will depend on whether a given site wishes to optimize the radiochemical yield or the ease of the use.


2010 ◽  
Vol 46 (3) ◽  
pp. 563-569 ◽  
Author(s):  
Marina Bicalho Silveira ◽  
Marcella Araugio Soares ◽  
Eduardo Sarmento Valente ◽  
Samira Soares Waquil ◽  
Andréa Vidal Ferreira ◽  
...  

18F-Sodium fluoride (Na18F) is a radiopharmaceutical used for diagnosis in nuclear medicine by positron emission tomography (PET) imaging. Bone scintigraphy is normally performed using 99mTc-MDP. However, 18F PET scans promise high quality imaging with increased resolution and improved sensitivity and specificity. In order to make available a tool for more specific studies of tumors and non-oncological diseases of bone tissue, the UPPR/CDTN team undertook the production and quality control of Na18F injectable solution with the physical-chemical, microbiological and biological characteristics recommended in the U.S. Pharmacopeia. Na18F radiochemical purity was 96.7 ± 1.3 %, with Rf= 0.026 ± 0.006. The product presented a pH of 5.3 ± 0.6, half life of 109.0 ± 0.8 minutes, endotoxin limit < 5.0 EU.mL-1 and no microbial contaminants. The biodistribution of Na18F was similar to that described in the literature, with a clearance of 0.19 mL.min-1 and distribution volume of 18.76 mL. The highest bone concentration (5.0 ± 0.5 %ID.g-1) was observed 20 minutes after injection. Na18F produced at the UPPR presented all the quality assurance requirements of the U.S. Pharmacopeia and can be safely used for clinical bone imaging.


2020 ◽  
Author(s):  
Richard Edwards ◽  
Hannah Greenwood ◽  
Timothy Witney

<p><i>Purpose</i>: (S)-4-(3-<sup>18</sup>F-Fluoropropyl)-ʟ-Glutamic Acid ([<sup>18</sup>F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system x<sub>C</sub><sup>-</sup>, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [<sup>18</sup>F]FSPG production are required. Here, we report a cassette-based method to produce [<sup>18</sup>F]FSPG at high radioactivity concentrations from low amounts of starting activity.</p><p><i>Procedures</i>: An automated synthesis and purification of [<sup>18</sup>F]FSPG was developed for the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [<sup>18</sup>F]FSPG and by assessing radiochemical purity using radioHPLC. Purification of [<sup>18</sup>F]FSPG was conducted by trapping and washing of the radiotracer on MCX SepPak catridges, followed by a reverse elution of [<sup>18</sup>F]FSPG in phosphate-buffered saline. Subsequently, the [<sup>18</sup>F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer.</p><p><i>Results</i>: The optimized protocol produced [<sup>18</sup>F]FSPG in 38.4 ± 2.6% RCY and 96% radiochemical purity. Small alterations, including the implementation of a reverse elution and an altered hypercarb cartridge, lead to significant improvements in radiotracer concentration from <10 MBq/mL to >100 MBq/mL. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [<sup>18</sup>F]fluoride.</p><p><i>Conclusions: </i>We have developed a robust and facile method for [<sup>18</sup>F]FSPG radiosynthesis in high radiotracer concentration, RCP and RCY. This cassette-based method enabled the production of [<sup>18</sup>F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of cassettes for an ‘out the box’ synthesis on a synthesis module routinely used for clinical production make the method amenable to rapid and widespread clinical translation.</p>


Sign in / Sign up

Export Citation Format

Share Document