Rearrangements in the Molecular Ions of Some ortho-Substituted Schiff Bases

1993 ◽  
Vol 46 (6) ◽  
pp. 895 ◽  
Author(s):  
T Blumenthal ◽  
M Dosen ◽  
RG Gillis ◽  
QN Porter

Under electron ionization conditions, the ortho-substituted Schiff bases N-benzylidene-o-toluidine (1a), N-(o-methylbenzylidene)aniline (1b), N-salicylideneaniline (1c) and N-(o-methoxybenzylidene)aniline (1d) give fragment ions which have been shown by collision-activated mass-analysed ion kinetic energy spectra to have the structure of the protonated molecular ions of indole (2), benzofuran (3), and 1,2-benzisoxazole (4). The molecular ion of N-(o-methylbenzylidene)-o-toluidine (1f) gives as fragment ions not only the protonated molecular ion (2) of indole and the tropylium ion but also the molecular ion of anthracene. Attempts to find supporting evidence for a mechanism for this rearrangement by deuterium labelling of a methyl group in (1b), such as (1g), have been unsuccessful.

1990 ◽  
Vol 43 (12) ◽  
pp. 2021 ◽  
Author(s):  
AT Lebedev ◽  
TY Samguina ◽  
T Blumenthal ◽  
MY Kolobov

The pathways of the electron impact induced fragmentation of 1-aryl-5- hydroxy-1,2,3-triazole-4-carboxamides were studied. The compositions of the key ions were confirmed by high-resolution mass spectrometry. The proposed pathways were established from mass analysed ion kinetic energy spectra, and B/E and B2/E linked scans. A variety of structures for the molecular ion of the title compounds is proposed.


1971 ◽  
Vol 49 (13) ◽  
pp. 2217-2222 ◽  
Author(s):  
A. A. Herod ◽  
A. G. Harrison ◽  
N. A. McAskill

The reactions of the molecular ion have been studied as a function of the ion kinetic energy for methyl fluoride and methyl chloride. The following reactions are observed[Formula: see text]For methyl fluoride (X = F) reactions c and d have kinetic energy thresholds and become significant at high ion energies. For CH3Cl (X = Cl) reaction a is not observed and reactions c and d are of only minor importance at high ion energies. Rate coefficients for the molecular ions and a number of fragment ions as well as rate coefficients for further reaction of CH4X+ are reported.


1982 ◽  
Vol 35 (7) ◽  
pp. 1365 ◽  
Author(s):  
A Benedetti ◽  
C Preti ◽  
L Tassi ◽  
G Tosi

Substituted benzeneseleninic acids of the type XC6H4SeO2H (X = m-Cl, p-Cl, m-Br, p-Br, p-Me, m-NO2, p-NO2) have been investigated by mass spectrometry. The fragmentation modes and the fragment ions are discussed and compared with those obtained from the mass spectrum of m-nitro-phenyl selenocyanate, O2NC6H4SeCN. Generally, as regards the acids, besides very weak peaks due to the molecular ions, a number of peaks at higher mass numbers and of greater intensity is observed; these peaks are in multiplets typical of the presence of two selenium atoms, and they correspond to the disubstituted diphenyl diselenides of the type XC6H4SeSeC6H4X. m-Nitrophenyl selenocyanate shows an intense molecular ion peak and the relative fragmentation, while the peak due to the diselenide is of very low intensity.


Experimental problems associated with studies of the scattering of kilovolt projectile ions in mass spectrometers designed primarily for chemical analysis are discussed. The parameters that are important in satisfactorily controlling and defining the actual scattering angle in relation to the observation angle are considered in detail. Two different experimental configurations are considered; angular selection before, or after kinetic energy analysis of the collision products. A modification to a VG ZAB-2F double-focusing mass spectrometer, in order to observe angle-resolved ion kinetic energy spectra of collisionally scattered ion beams, is described. Initial angle-resolved experiments on systems that do not involve fragmentation, have been performed. The results are presented for the angle-resolved energy loss spectra of Ar + and N 2 + and the angle-resolved charge-stripping of Ar + . A feature of the apparatus described is the small uncertainty in the angular selection of the analysing angle-resolved slit.


1976 ◽  
Vol 16 (1) ◽  
pp. 75-80 ◽  
Author(s):  
J.-B. Ozenne ◽  
J. Durup ◽  
R.W. Odom ◽  
C. Pernot ◽  
A. Tabché-Fouhaillé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document